摘要:提出一种粒子群(Particle Swarm Optimization,PSO)与人群搜索融合(Seeker Optimization Algorithm,SOA)的算法,将其用于优化工业控制过程中PID参数。充分利用粒子群算法突出的局部寻优能力与人群搜索算法的全局搜索能力,将两种算法结合,提高算法的收敛速度以及收敛精度。通过不同的典型测试函数,将其分别对比标准粒子群算法以及人群搜索算法,验证该融合算法具有更佳的优化效果。将该融合算法用于PID控制器参数优化,仿真结果表明,该融合算法提高了控制精度和系统响应速度,鲁棒性好,改善了控制系统性能。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社