HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

卫星通信论文集锦9篇

时间:2023-03-14 14:47:57

卫星通信论文

卫星通信论文范文1

在实际系统中,不作此限制。可以看到,发端仅定义了缓存提速前和物理成帧后的数据流必须使用信息速率和信道速率外,并没有定义其它模块的接口速率。从实现角度来说,最简单的方式是从信息速率提速至高速时钟,利用高速时钟完成信息成帧和编码,待物理成帧输出时再降速至信道速率,但此时的延时最大可接近帧长。若收端也采用该时钟方式,整个调制解调延时将至两倍帧长。为减少时延,传统方法在实现该帧结构时,信息速率为3kbps的连续数据流经缓存后,被提速至信道速率,后续模块的输入输出时钟均使用信道速率。若忽略各模块内部的处理时延,仅考虑各模块间的相对时延,传统方法实现该帧结构的时序可以用图2表示。图2中的带圈标号与图1中的标号一致,分别表示①缓存提速、②信息成帧、③分组编码和④物理成帧,且时序图中连接相邻模块的单箭头表示两端的时刻点相同(下同)。简单计算可知,按照传统方法成帧后,帧尾时刻与对应的信息数据流分块的间隔时刻相比,时间差Dt为16比特(信道速率)。收端在解调时,假定不存在频偏和定时误差。传统方法在搜索到独特码之后,缓存降速至信息速率之前,各模块的输入输出时钟均使用信道速率。传统方法的解帧时序可以用图3表示。图3中的带圈标号分别表示图2中对应标号的逆过程,即①缓存降速、②信息解帧、③分组解码和④物理解帧。由于分组解码模块需要每个码组全部输入后再进行解码,所以最后1个码组的解码结果,最早可以在全部码组输入解码模块后开始输出。而其它码组的结果必须缓存后延迟输出,以便和最后码组的输出连接,形成数据块后进入信息解帧模块。简单计算可知,按照传统方法解帧后,帧头时刻与对应的信息数据流分块的间隔时刻相比,时间差Dr为120比特(信道速率)。

二、二次变速方法

由于忽略了各模块内部的处理时延,上节描述的传统方法的时延,在一次变速的限制下已减至最小。观察图2发现,Dt的长度正好是分组编码附加的全部监督码元的长度。也就是说,除了首个码组的信息码元是无延时地输出外,其它码组的信息码元都是被延时后再输出的。随着分组编码不断在码组后插入监督码元,越靠后的码组的延时就越大。要想减少该延时,就必须把首个码组进入编码模块的时刻尽量提前。观察图3同样发现,虽然最后1个码组的解码结果的最早输出时刻是固定的,但其它码组的结果若能尽早输出,就可以减小时间差Dr的长度。当然全部码组的输出仍然要互相连接不能分离,供信息解帧模块使用。为此本文提出一种二次变速的方法,在信息速率和信道速率之间增加中间速率,用于成解帧和编解码的部分处理。通过将码组尽早输入或输出分组编解码模块,进一步减小调制解调时延,新方法的成解帧时序分别如图4和图5所示。图4中,信息速率为3kbps的连续数据流经缓存后,被提速至中间速率3.625kbps进行信息成帧,并送入分组编码模块。同样不考虑编码延迟,即监督码元可在高速时钟下得到。当分组编码模块使用信道速率输出时,Dt的长度正好是最后1个码组的监督码元的长度。其它码组在中间速率的作用下,与传统方法相比,因为提前进入了编码模块,已经被提前输出了。在每帧包含多个码组的情况下,新方法在发端减少时延的效果将更加明显。图5中,通过在分组解码模块的输出端使用中间速率,与传统方法比较,虽然最后1个码组的开始输出时刻不变,但其它码组的开始输出时刻被提前。继续使用该中间速率进行信息解帧后,缓存降速至信息速率的开始输出时刻也就被提前了。简单计算可知,此时的Dr约为104.8比特(信道速率)。显然,中间速率越小,Dr的值将越小。若码组的信息码元数不变,每帧包含的码组越多,Dr的值也将越小。

三、结论

卫星通信论文范文2

自通信车改装后投入使用以来,通过近5年来各种规模的应急演练以及2010年玉树7.1级地震、2013年青海省海西州5.0级地震的实际检验,该应急卫星通信车在使用中暴露出来很多的问题,总结情况如下:(1)原有车内设备机柜设计及布局不合理,使得各设备的供电及信号之间产生交叉干扰。其中部分通信设备的散热条件无法保证,电力线路杂乱无章。在实际使用过程中,不仅存在故障排查困难,同时还有因用电安全引发火灾等事故的重大隐患。鉴于上述情况,对机柜内设备进行了重新布局,只保留与卫星通信相关的通信设备及供电设备,将部分周边设备进行下架处理。(2)原车所用的视频编解码器及网络交换机等设备,经与原厂家联系后,确认部分产品已停产,另有部分已无法提供维修必须的备品备件。因而通过对此类设备进行维修,使其具备通信功能的做法不可行。因此更换掉原有的解码器,采用时下主流的视频会议设备及网络交换机,以确保应急通信车与指挥中心视音频信号的安全畅通。(3)原车卫星设备的配置不合理。该车是在原有箱式卫星便携站的基础上进行了改进,将便携站的全套设备安装于改装后的依维柯厢式货车内,天线部分做了车顶安装。由于车顶天线与功放采用软波导连接结构,长期风吹日晒会产生老化磨损。破裂后的波导产生微波信号泄漏,造成通信质量下降的同时,对现场操作的工程技术人员也会产生人身伤害。对此采取的策略是:平常不使用时对车辆加盖防尘遮雨罩,定期检查软波导的连接结构,如发现问题及时联系厂家更换或维修。(4)卫星系统对星时间长或无法正确对星。由于原有卫星系统未配备频谱仪或卫星信标机等对星设备,使得自动对星动作完成后无法对目标卫星的正确与否进行有效判定。因而,往往造成对不上或对错星的情况,无法实现正常通信。基于上述情况,对现有设备进行优化。其中,对已停产或无法提供维修服务的设备进行更换;部分尚能使用的设备作为现有链路的备份设备;使原有的单通路卫星应急系统升级成为具有一定抗灾能力的1∶1备份的卫星应急通信系统。此外,在寻星过程中尽量避免指挥车周围有高层建筑物、树木枝叶等阻碍,以免造成卫星波速回波反射[1]。(5)整车配重不合理,集成后车辆右后部偏重,影响车辆行驶的平稳性。因此,在满足基本通信功能的前提下对车厢设备,车顶卫星系统和后舱供电设备重新合理布局,调整车辆的平衡性。

2对策探索

目前,卫星通信技术是我国大范围区域内应急通信的主要技术手段,包括VSAT技术系统、BGAN技术系统。短波通信技术在地震应急救援现场的局域通信中也有很大的作用。这类应急通信系统应当具有高信噪比、大容量、高稳定性、全天候、盲区小、抗干扰、多通道、低功耗、小型便携、高机动性等基本特性[2]。在目前技术水平条件下,应进一步完善通过多种技术系统集成的震后应急通信系统,以解决地震后初期不同情况下地震现场与后方指挥中心的通信。

2.13G技术的应用据科学统计,不同震级的地震因为释放能量的大小不同,对震区内的通信环境的影响也有不同的差别。比如,Ms5.0~6.0级地震发生后,震区大部分地面网络或3G网络受损普遍轻微,Ms6.0~7.0级地震对地面网络或3G基站的破坏一般发生在高烈度区,而Ms7.0级以上的地震发生后,地面通信设施基本不可用[3]。应急通信车应根据地震现场的实际情况选择不同的通信方式,在地面通信设施受损较小的情况下可依托地面网络或者3G作为信道开展视频会议、语音通讯、数据传输业务,极端条件下使用VAST卫星网络,这样可大幅度提高地震应急通讯效率。3G网络与VAST卫星网络相比传输速度较快,下行速度峰值理论可达3.6Mbit/s,上行速度峰值也可达384kbit/s。国内支持国际电联确定3个无线接口标准,分别是中国联通WCDMA、中国移动TD-SCDMA、中国电信CDMA2000。WC-DMA以其技术成熟、终端类型多、速率高、网络覆盖好等特点在3种3G网络中具有明显优势,因此可以采用WCDMA技术作为主用3G通信技术,实现应急通信车与指挥中心的3G通信,CD-MA2000或TD-SCDMA可作为备用的3G通信方式。

2.2短波电台的应用短波通信属于独立自主通信,不依赖其他有线和无线通信手段都必须具备的网络、传输线路、中继体和建筑等基础运行条件,抗毁能力最强,是实现中、远程无线联络的基本手段[4]。从点对点直通距离看,短波是所有无线通信方式中距离最远的一种无线通信手段。另外,短波通信设备简单,可以根据使用要求进行固定设置,也可以个人背负或车载安装进行移动通信,组网灵活,实时性好,特别是在救灾初期常常是主要依赖的通讯工具。因此,我们可以建设一套短波通信网络,由车载电台、便携式电台组成。车载电台用于组成指挥所通讯枢纽或作移动通讯使用,选择使用鞭形天线或双极天线,这样可以保证应急通信车在一般行进速度时正常通信,便携式电台具有体积小和重量轻等特点,一般采用鞭形天线,利用地波进行近距离通信,主要用于应急通信车无法抵达的陡峭山地灾害现场,由应急人员背负便携式电台进入地震现场,保障通讯联络,实现无盲区通讯。为了解决短波通信网与其他通信的融合问题,同时提高整个短波通信网络的可靠性,必要时可以配备多网系融合设备,通过该设备可以将短波无线通信和有线通信、卫星通信及超短波通信等通信手段进行融合,通过其他制式的承载网络,实现对短波系统的延伸和扩展,从而可以大幅度提高通讯效率[5]。

3结语

卫星通信论文范文3

卫星信号复用模块的功能是:将船载北斗收发设备与其原配的控制终端设备进行分离;将信号根据不同策略复用为两路数据信号;提供与数据采集终端的接口。图1给出了卫星信号复用模块与系统的其他部分的连接的方式。其中的北斗卫星通信天线完成北斗信号的收发、导航信号的接收以及双向数字接口的信号交互;北斗控制终端是国内北斗星通公司开发的多用途控制设备,其功能涵盖了导航、轨迹录、报文收发和紧急情况下的报警呼救等;数据采集终端是本系统中的采集数据的收发系统,利用人工输入海洋资源数据,并通过卫星信道将数据发回北斗整列控制中心。卫星信号复用模块是各个模块的通信中枢,完成设备对信道的申请和释放,并且为各个工作子系统供电,系统对其工作稳定性和可靠性提出了较高的要求。图2给出了卫星信号复用模块的内部结构图。其中RXD_T和TXD_T分别表示RS232电平的北斗卫星天线的数据收发信号;RXD_K和TXD_K表示北斗控制终端的RS232数据收发信号;RXD_C和TXD_C表示数据采集终端的数据收发信号。其结构比较简单,但是在前期的设计和测试中发现了一系列可靠性问题。长时间地将数据采集终端以在线方式工作会造成卫星天线或者控制终端无法收发数据,因此在设计上采用了回馈电源模式,即当采集器不工作时,切换电路工作于信号直接切换模式,信道不受数据采集器控制。同时还发现当数据采集器不工作时,地线连接会造成数据串扰,所以在设计中采用了地线切换模式,当采集器不工作时将地线断开。为了进一步提高可靠性,降低干扰,信号切换没有采用有源的电子器件,而采用了电磁式继电器,当采集器不工作时系统的信号处于机械切换模式。采取上述措施后,系统无响应和数据通信失败的现象基本没有出现。

2控制终端设计

控制终端是数据采集人员的操作设备,其功能是输入采集的数据并且将数据发送。控制终端采用了ARM9架构的S3C2440作为核心处理器,利用自主开发的嵌入式操作系统,采用面向对象技术进行开发。其设计的模块结构图见图3。S3C2440核心板上有SDRAM与NANFLASH,分别用于应用程序的执行和程序的存储;北斗控制终端接口包含了北斗天线的串行控制口和电源;智能液晶显示接口通过串口2将核心板的显示控制数据传递给智能液晶模块;阵列式扫描接口读取操作人员的输入键值用于数据控制。控制终端的软件结构图见图4。扫描键盘处理模块驱动阵列式键盘,读取用户的输入键值,并提交系统处理;智能终端GUI模块负责用户的图形界面处理,主要功能包括控件界面绘制,事件响应以及消息传递;GPIO电路驱动模块用于控制卫星信号复用模块的北斗信号切换,以及北斗系统电源的管理;伪汉字空间的转换模块负责将采集到的数字信号映射到GB2312的汉字空间,以适应北斗卫星通道的数据传输;稀疏数组压缩模块解决了北斗数据包短,而采集数据量较大的问题,通过自定义的无损压缩算法,将采集的数据高效率压缩以适应北斗数据通道的特点;北斗数据编码解码模块负责将处理好的数据以北斗规定的格式编码和解码;系统参数管理模块负责管理存储在智能终端中的系统参数,以配置不同的应用方案。

3伪汉字编码方案

北斗卫星通信系统对用户的级别做了严格限制,民用的北斗运营商普遍采用了内容过滤程序,即当发现传输内容为GB2312国标码时,允许数据通过,当发现传输内容为非GB2312国际码时不允许数据通过。数据采集的数据格式不符合GB2312编码标准,因此在系统设计上遇到了数据无法传递的困难。为了解决上述问题,设计了伪汉字编解码方案。其基本思路是:编码时将原始的数据流进行分解,分配到多个汉字空间,解码时从汉字空间提取出数据流,并且将拆分的数据进行合并。GB2312是北斗采用的汉字通信系统,用于民用终端的数据发送。GB2312中每个汉字由2个字节组成,第一个字节的范围为176~247,而第二个字节的范围为160~254。因此第一个字节的有效编码空间为0~71,而第二个字节的编码空间为0~94。为了简化算法,将两个字节的编码空间都设置在0~63即2的6次方范围内。实际上将数据看成一个Bit流,将8Bit为单位分解为6Bit为单位,其示例图见图5。图中上方的8Bit的3个字节被看成24Bit的数据,在图中部分解到4个字节,每个字节为6位,高2位补零。实际上上方的数据与中部的数据从Bit流看来都是24Bit。得到4个字节的6Bit数据后,在每个字节上加上176得到图5中下部的数据,即伪汉字编码。该编码的范围位于GB2312的范围内,可用于北斗信号的数据传送。解码的过程与编码的过程相反,不再叙述。在编码的过程中还会遇到实际问题:图5中演示的情况属于比较特殊的情况,输入的数据的字节数量是3的倍数,输出的字节数量为4的倍数。现实的数据流不一定满足上述要求,例如如果输入的数据是4个字节,输出需要的字节数是6个字节;如果输入的是5个字节输出的需要6个字节。这样会给编解码带来巨大的困难。为了简化编解码,可以将数据进行特殊的处理,办法是在传递的数据中增加一个数据的长度指示,并且将数据进行整数倍拼凑。其过程见图6。在数据的头部附加了一个长度指示器,其作用是当收到的数据后部附加的有PAD时可以将原始的数据提取出。PAD是附加在有效数据后面的无效数据,PAD的数量根据原始数据长度变化,其数量为0~2个。数据扩展的原则是将数据的整体长度扩展为3的倍数。这样得到的伪汉字编码的数据长度就是4的倍数,如此扩展的目的是有利于编码和解码。

4北斗数据通讯阵列与系统整体架构

由于北斗系统是军民两用系统,并且随着用户数量的增加,通信带宽日益紧张,为了保障系统中的高级用户权限,对用户的收发信息的频度做了限制,平均一分钟才能发送一条信息。而对于接收信息的频度却没有限制,所以信息的接收相对较快。由于北斗的信息通道采用了无验证的协议,发送方无法得知接收方是否成功接收数据。为了保证通信的可靠性,本数据采集系统对北斗通信协议进行了改进。具体方法为:发送方发送消息后,从系统中获取一个随机变量用于产生延时,如果在规定的时间长度内没有收到对方发来的验证数据就继续发送,直到成功收到接收方的验证数据报。采用上述协议后,系统通信的可靠性得到了提高,但却给北斗的通信系统带来的严重负担。特别是随着采集系统数量的增加,控制中心的通信负担日益加大,采集终端数据发送的成功率也大幅下降,严重影响了系统的正常工作。为了提高系统的数据吞吐率,利用北斗系统收发速率不平衡的特点设计了北斗卫星阵列,采用了单点接收设备以及多点发送的通信模式。当接受北斗设备收到采集系统来自海上的信息后,根据负载平衡的算法,从发送阵列中选择一个空闲设备完成数据发送。如果没有空闲设备就根据负载最少原则获取北斗发送设备并将数据压入发送消息队列。采用北斗阵列和负载平衡算法后,数据的吞吐率提高,系统的反应速度加快,也提高了采集设备的用户体验。系统的整体结构见图7。多个北斗设备通过统一的网关接入北斗应用服务器,相关的控制软件运行在其上,负载解析和实现北斗设备的控制协议,系统的负载平衡以及将采集的数据回写到数据库服务器。系统决策服务器上运行的软件负责解析数据,分析相关的资源信息,以及GIS的控制信息。Web服务器对通过VPN网关的远程用户提供了数据访问服务,由于数据,对不同的用户采用了硬件加密的认证模式,数据的传输也经过了加密通道的处理。

5实际应用

该研究项目经过多年的研发已经在海洋渔业资源、海洋生态和海洋安全方面得到广泛应用。为了分析海洋渔业资源,在本终端上设计了渔业捕获实时报告系统。具体方法是针对渔业捕捞的的各种船型,每种船型选择常见的50种鱼类,将鱼类的名称和图片写入终端。船员在捕捞结束后利用本终端将各种鱼类的产量通过北斗发送给控制中心。其中的数据不仅有渔获产量,而且还有捕捞的时间和地点,控制中心将数据记录入数据库后,结合相关的港口渔获数据,以及海洋卫星遥感数据,可以分析海洋鱼类的巡游规律,并且指导渔业生产。渔业管理部门也可以了解海洋整体上的生产情况,以便合理地进行生产管理。目前已经在南海生产渔船上安装了近300套设备,大部分设备工作正常。图8给出了第二代渔获采集终端实物,图9给出了GIS软件上的安装了设备的渔船的作业分布图。该系统还用于渔场预测,结合卫星遥感信号得到的温度、洋流和叶绿素等相关因素,根据终端传回的数据,分析渔场并将得到的预报信息通过控制中心发送到终端上,从而指导渔业生产,减少资源消耗,提高经济效益。图10给出了渔场预报的样图。该设备还用于增值放流工作的检测:为了保证渔业资源的稳定,需要人工放流鱼种。为了跟踪放流鱼种的生长和巡游情况,放流前在部分鱼种上留有标志,并且在放流前将标志与鱼种信息记录在数据库中,当鱼被装有终端的渔船捕获后,船员将鱼的参数和标志编号输入终端,通过北斗发回控制中心,相关的放流数据就可以进入软件分析,从而得到放流的效果评估。目前本终端还具有了天气预报信息的发送以及他国渔船越界捕鱼事件报告的功能,可以在渔业安全和保护国家渔业资源等方面发挥作用。

6结束语

卫星通信论文范文4

本天线伺服系统采用高性能DSP+FPGA架构作为系统控制核心,因DSP具备指令周期短、运算精度高等特点,因此选用高性能DSP芯片TMS320F28335完成天线控制与位置解算功能,从而满足控制系统的时效性和精确性;又因FPGA具备逻辑单元丰富、集成度高以及工作稳定可靠等特点,因此选用XC2S300E⁃6PQG208I型FPGA实现DSP外设接口的扩展,即在单片XC2S300E⁃6PQG208I上完成操控输入及显示、数据采集、滤波及控制算法处理,并输出PWM信号进行电机调速控制,从而满足天线伺服系统中多电机、多编码器、多通信接口以及系统操控界面接口的需要。伺服控制单元框图如图3所示。由图3可以看出,系统要实现的控制功能比较复杂,主要体现在:天线姿态、天线地理位置的解算,主天线方位、俯仰角度的闭环运动控制,馈源极化角度的闭环运动控制,卫星位置的存储,系统限位开关的采集与安全保护单元的联锁设计,显示接口与界面的设计,操控面板的设计等。由图3还可以看出,系统所有外设接口均通过FPGA进行扩展,并采用了光隔,确保控制单元运行的稳定性和可靠性。

2电机的选型及计算

2.1主天线电机选型及计算

2.1.1天线转台加/减速时所需要的力矩式中:W为天线直径;L为天线宽度方向到回转轴的距离;I为天线相对于转轴的转动惯量;m为天线的总质量;θ为天线倾角。

2.1.2转台在风载荷下产生的颠覆力矩(按照天线迎风面最大算)风载荷(20m/s)作用于雷达的最大作用力:式中:ρ为空气质量密度(取1.2kg/m);υ为平均风速(20m/s);Cx为风力矩系数(取1.2);A为天线风阻反射面积(πR2θ)。考虑到交流伺服电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定等特点,选择韩国麦克彼恩交流伺服电机作为主天线方位和俯仰驱动电机,电机参数如表1所示。

2.2极化电机选型及计算极化电机主要用来驱动馈源极化轴。本天线系统采用波纹喇叭作为馈源,重量轻,约5kg左右,且极化轴对速度要求严格;而步进电机转动角度精确,转角和转速不受电压波动和负载变化影响,能实现快速启动、停止、反转和改变转速,因此选型为步进伺服电机,其参数如表2所示。

3卫星通信伺服控制算法

为了实现天线高精度指向卫星,本天线伺服系统采用了粗精对准相结合的方式进行对星,即先利用预设的卫星位置计算出天线理论指向角,实现天线的粗对准;再通过监测信标接收机输出的AGC电平信号强度,实现天线的精对准。

3.1天线粗对准控制算法天线粗对准控制算法即天线理论指向角的计算,这包括天线俯仰角E、天线方位角A和馈源极化角P的计算。设天线所处地理位置的经度为φ1,纬度为θ,静止卫星所在经度为φ2,经度差φ=|φ|1-φ2,可计算出天线方位角A、天线俯仰角E和馈源极化角P。计算公式为。在天线粗对准过程中,将目标卫星的轨道信息(卫星的在轨经度)输入伺服控制单元,利用GPS接收机测得天线所在地的经纬度信息。伺服控制单元进行姿态解算后得到天线对准目标卫星所需要的方位角、俯仰角和极化角,然后驱动各电机运动以实现对卫星的搜索。在对星的过程中同时要利用姿态传感器不断检测天线波束的实际指向信息,得出天线实际角度和理论角度的差值,伺服控制单元根据这些差值驱动天线的方位、俯仰和极化方向的电机不断转动,通过不断地比较,驱动天线最终指向卫星。在天线转动的同时还要不断采集信标接收机输出的AGC电平值的大小,该值也作为一个反馈信号反馈至伺服控制单元,判断该值与预设电平门限值的大小。当采样的电平值大于该门限值后,结束粗对准状态,进入精对准状态;否则,则需继续转动天线进行对准。

3.2天线精对准控制算法天线完成了粗对准后,天线进入能收到信号的范围,但是收到的信号强度较弱,距离信号最强指向还有一定的角度差。为了使信号接收效果达到最佳,需进行天线精对准。在这一阶段,需在粗对准后的位置附近结合信标接收机的输出电平AGC的大小变化做微动精确跟踪,最终找到信号最强(AGC电平值最大)的位置作为对准卫星的目标位置。天线精对准控制算法图如图4所示。

4好结语

卫星通信论文范文5

关键词:卫星通信 发展现状 应用 通信业务 发射

中图分类号:TN927 文献标识码:A 文章编号:1674-098X(2014)09(a)-0081-02

卫星通信从20世纪50年代正式实用至今已有半个多世纪的历程,无论是在理论研究领域,还是在应用领域,都已经取得了极大的进展,被大规模的用于包括民用、商业和军事专用等范围中,如地球资源探索、天气预报、搜索和营救、定位以及个人通信等。随着21世纪的到来,科学技术发展迅速,因此更加推进力卫星通信在技术方面的发展。该文结合卫生通信的特征,系统阐明卫生通信的应用发展现状。

1 卫星通信介绍

1.1 卫星通信相关知识

卫星通信是指凭借卫星信道为传输媒介,传输各种数据信息的一种通信方式。其主要由通信卫星、地面基站等有机组成,其中通信卫星具有通信功能,通常置放在距离地面数万公里的太空中,用来作为地面发射出去的信号的中继站,能够对在空中传输的信号进行接收、放大和再发射,一般说来,通信卫星对地球而言可以分为两种,同步定点通信卫星和相对固定的静止卫星,通信卫星上能够装载几个到几十个的转发器,可以按照卫星的功率,具有多种通信容量,一般彩色电视可达12路以上,还可开通几个到几十万路的话路,并且能够提供数据传输及其他多种通信方式使用;地面基站又称为地球站,其主要功能是用来发射、接收卫星信号,地面基站使用卫星天线对于通信卫星跟踪非常方便,设备装置也比较经济,通常对于指定的目标区域,使用基站对准卫星的天线波束非常容易,可以连续24小时通讯。

卫星通信和计算机发展是相辅相成的,利用卫星在计算机各站点之间进行通信,甚至在许多用户使用卫星发射机的全部频带的情况下进行多路访问,更能显示卫星通信的优势。地面站使用上行通道的某一波段的频率多路访问通信卫星,而通信卫星则使用下行通道的另一波段的频率对地面站进行广播,地面站由发射装置、接收装置、地面天线、控制系统等设备组成,将现代化电子计算机技术和通信技术有机的结合,共同融为一体,可按通信协议通过卫星信道、接收装置接收网内其他地面站发来的数据信息,同时也可以可按通信协议通过发射装置、卫星信道向网内其他地面站发送数据信息,非常的实用。

1.2 卫星通信的特点

卫星通信具有以下特点。

(1)卫星通信覆盖范围广,面积大,能够在很长的距离内以极快的速度发送大量的数据信息,并且具有组网灵活,见效快和多址通信能力。

(2)卫星通信可以提供廉价、稳定可靠的信道,并且能够克服恶劣的地理环境等自然条件的限制。

(3)卫星通信使用地面基站和通信卫星有机组成,与其他通信装置相比,起维护也很方便,无论通信距离的远近,跨地域维护所需费用相同,更适合人口比较分散地区使用,对于各洲之间、世界各个国家地区间和国内各城市之间的数据通信和信息传递,都能够满足准确化和快速化的需要,其应用领域非常的广泛。

由其特点我们可以发现,卫星通信是一种非常理想的长途通信方式,在实际应用中具有极大的优势和潜在的价值。

2 卫星通信的应用发展

2.1 卫星通信的应用发展历程

英国著名科学家阿瑟・克拉克于1945年10月,其在文章中提出在进行全球无线电通信的时可以利用同步卫星科学设想,经过众多科学家的不懈努力,通过不断研究和试验,人们终于在20年后将这一伟大的设想变成现实,美国在1964年8月发射的第三颗“新康姆”卫星定位在东经155 °的赤道上空,通过它顺利地开展了传真、电话和电视的传输试验,并在同年依靠它向美国转播了东京奥运会的盛况。到那时,卫星通信的早期试验时期正式完毕。

20世纪60年代中期,卫星通信开始迈进实用时期。西方发达国家财团所成立的“国际卫星通信组织”在1965年4月把第一代“国际通信卫星”发射到地处大西洋上空的西经35 °的静止同步轨道上,该卫星从此正式承接欧洲和美洲之间的一般通信和商务通信业务。半个月后,前苏联顺利发射了首颗“闪电-1”非同步通信卫星进入远地点4万 km、近地点500 km的倾角为65 °准同步轨道(运行周期为12 h),该卫星可以为前苏联的西伯利亚、北方、中亚地区提供传真、电视、广播和电话通信业务,这预示着卫星通信的应用成果―― 世界通信业务开始了。

20世纪70年代初,卫星通信逐步渗透到国家内部的通信领域。加拿大在1972年顺利发射了国内通信卫星“ANIK”,完成了国内首个卫星通信业务,取得了可观的经济效益和社会效益。在这期间,地球站也陆续使用10 m、18 m、21 m等较小口径的天线,使用常温参量放大器接收机和几百瓦级行波管发射级等使地球站呈现小型化的发展态势,成本得到了极大地削减。与此同时,还产生了海事卫星通信系统,依靠大型岸上地球站转接,为海洋运输船舶提供可靠的通信服务。

20世纪80年代,VSAT(极小口径终端)卫星通信系统的成功问世,标志着卫星通信迈向了极速飞跃的发展时期。VSAT集计算机通信和技术于一身,智能化和固态化的小型号无人值守地球站。20世纪90年代,中、低轨道移动卫星通信的出现为国际个人通信创造了便利条件,加快了世界信息化的步伐。

进入21世纪,卫星通信无论是在理论研究领域或者是再应用领域,比如GPS,都取得了更加显著的成果。中国卫星的研究和使用开始于20世纪70年代初,1972年,我国利用引进的国外设备,并且租用国际第四代通信卫星,在我国最发达的城市北京和上海建立了四座大型地球站。我国于1984年4月8日成功地发射了第一颗试验通信卫星,位于东经125度的赤道上空,从第一颗实验卫星的发射迄今为止,我国已经发射了数十颗卫星以供军事和商业使用,目前,全国已有数百个市县可以通过卫星与世界上许多国家和地区进行国际通信,我国今后还将发射具有更多转发器的卫星,以便使卫星通信水平获得跨越式发展。

2.2 卫星通信业务的应用发展现况

无线定位业务发展的现况

如今,国际上存在两类卫星定位系统:俄罗斯的世界轨道卫星导航系统GLONASS和美国的全球定位系统GPS。GLONASS系统包含24颗卫星,其中,备用的卫星有3颗,匀称地布局在相隔为120 °的三个轨道平面上,每一个轨道平面同赤道平面呈64.8 °的夹角。卫星朝地面传输两个不同频段的扩谱信号,依靠卫星信道完成卫星的区分。

GPS起初被广泛应用在美国航空、航海及国防军事等诸多领域,并通过美国军方负责机构开展必要地操作、维护和监督。因GPS拥有导航、测量、测绘等优势特征,所以,在民用领域依然有着较广阔的发展潜力和前景。GPS系统可以为世界24 h供应快速、持续、实时和高精确度的三维坐标,并能提供精密的时间定位信息,有着较好的保密性和抗干扰性。GPS系统目前共有24颗卫星,平均分布在6个轨道平面,其中21颗基本星为主用,3颗为主轨的备用星,卫星距离地面20200 km,以12 h绕行轨道一周的速度运行,这些轨道为均匀分布在与赤道夹角55 °的近圆形,任意轨道平面间夹角为60 °。每个卫星以两个频率发送电码,电码有两种,分别为军用电码与民用电码,军方搜索目标的误差仅1 m,民用搜索目标保持100 m的误差。尽管雷达系统及测向机技术等传统意义上的定位方法也能达到侦查测试地形方位的目的,然而,主要运用在军事领域,且开支浩大,假若能同GPS系统加以密切结合,会显著地削减成本。GPS系统能够极大地运用在地质勘查探测、海上搜索救援、探测大气层、沙漠方向引导、汽车定位、森林消防、飞机导航等诸多方面,在经济和社会发展中扮演重要角色。

近年来,在我国科学家的不断努力之下,已成功自主研发了通信导航定位卫星―― 北斗导航卫星,其技术也处于世界领先水平。我国于2011年4月和7月分别发射了第八颗和第九颗北斗卫星,完成了北斗导航试验系统(第一代系统)的建设,具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥重要作用。

2.3 卫星固定通信的发展现况

到21世纪初,国际经营卫星固定通信业务的企业大致有30余家,在轨静止卫星总共200余颗。其中,国际通信卫星企业有28颗、SES全球公司存在37颗、泛美卫星公司存在24颗和欧洲通信卫星公司具有22颗,这些企业所具有的卫星数目,占世界卫星数的一半以上。上述卫星中最具典型的先进卫星包含iPSTAR卫星与阿尼克-F2。iPSTAR卫星由泰国企业―― Shin于2005年8月发射成功,是目前拥有全球最大通信容量的商务类宽带卫星,总共拥有114台转发器,其Ku频段用户链路包含84个点波束、7个赋形广播波束和3个赋形通信波束,Ka频段的馈线链路存在18个点波束,通信的总容量高达45 Gbit/s,大致与超过1000个常规36 MHz带宽转发设备的容量相当,整星功率为15kW,卫星的重量高达6300 kg。阿尼克-F2卫星由加拿大电信卫星公司―― Telesat在2004年7月发射成功的全球首颗面向大众的商务类宽带卫星,拥有94台转发仪器,包含Ku频段32台、Ka频段38台、C频段24台,Ka频段拥有38个点波束,个别部位的转发设备可以实现星上处理,整星的功率为16 kW,卫星的重量高达5950 kg。

2.4 卫星移动通信的发展现况

卫星移动通信将通信卫星充当中继站,以便实现在移动用户之间或移动用户和固定用户之间完成彼此通信。该技术形式是传统意义上的卫星固定通信与地面移动通信相衔接的代表。就表现方式而言,它不但是一个将卫星充当中继站的移动通信系统,也是一个供应有效移动业务的通信系统,不仅能运用对地静止的轨道卫星,也能运用非静止的轨道卫星。近些年来,卫星移动通信时所采用的卫星系统包含全球海事卫星系统、亚洲蜂窝卫星系统、瑟拉亚卫星系统和移动卫星-2系统等,其中,亚洲蜂窝卫星系统与全球移动卫星系统的波束均能成功覆盖到我国。

全球海事卫星系统是由世界移动卫星企业直接运营的世界卫星通信系统,该卫星已迈向第4代。Inm arsat-4F1发射于2005年春,卫星总重量达5959 kg,该卫生运用一台具备波束成形和选用信道功能的透明弯曲管式数字信号处理设备与一副可以生成较多波束的直径为9 m的L频段天线,包含宽点波束19个、世界波束1个和窄点波束200个,其点波束供应用户终端的卫星等效全向辐射功率的强度为67 dBW,其运用极大地促使用户终端的小型态化,并能实现用户终端通信的手持化,提高了通信数据的运行速率,使视频直播通信走向高清晰化,Inm arsat-4F1卫星能够支持全部的Inm arsat业务及宽带国际区域网业务,还包括因特网接入业务。

亚洲蜂窝卫星系统由印尼等国联合研发、并于2000年2月发射成功的区域卫星通信系统。该卫生功率达14 kW,卫星的重量高达4500 kg,服务范围覆盖到亚洲全境。星上设有两副直径为12 m的L频段接收-发送天线,拥有140个点波束,其中,有45个点波束覆盖到我国,其等效全向的辐射功率强度为73 dBW,该卫星能实现对200万用户和20000条话音信道的支持。地面用户终端包含移动式、稳固式、便携式与手持式,可向用户供应双模的传真、话音、速率较低的数据及地区漫游等各种通信业务。

低轨道卫星移动通信中,有全球星系统、铱系统和轨道通信系统等。全球星系统1999年开始商业运营,其由48颗低轨卫星有机组成,卫星运用透明转发设备,多波束天线,馈线链路与用户链路同是VHF频段,为广大用户供应寻呼、传真及短数据等业务。用户终端主要包含车载、手机、船载、机载等多种移动终端,还包含固定和半固定终端。铱系统由66颗低轨道卫星组成的国际卫星通信系统,2001年成立新的铱卫星企业,并再度承接新的通信业务,该系统在全世界的覆盖范围包含北极和南极,星上的转发设备运用前沿的交换技术,多点波束天线,拥有星际链路,堪称最前沿的低轨道卫星通信系统,其用户链路是L频段,馈线链路和星际链路是Ka频段,并能供应传真、数据、寻呼和电话等多项业务,用户终端包含单模、双模及三模手机,固定终端与车载设备。轨道通信系统正式投入运营始于1997年,该系统由37-48颗低轨道卫星组成的国际卫星通信系统,每个卫星均运用单波束天线、转发处理设备,终端为单模手机和寻呼机。

3 结语

总之,随着科技的高速发展,卫星通信事业日新月异,小到人类生产生活都已经深深的感受到了其便利,大到一个国家和整个世界都能深刻的体会到卫星通信的有利之处,随着其他学科先进技术的问世和应用,如光开关、超导体技术、光信息处理、智能星上网络监控、新型发射设备及新型轨道技术的应用,将会促使卫星通信产生重大的发展变化,也会对未来生活产生巨大的促进作用。

参考文献

[1] 李洪钧,刘榕,韩福春,等.浅析卫星通信发展现状及对策[C]//中国通信学会.虚拟运营与云计算―― 第十八届全国青年通信学术年会论文集(上册).中国通信学会,2013.

[2] 张更新,谢智东,谭哲.卫星通信的发展现状及产业发展综述[J].数字通信世界,2009(6).

[3] 周皓静.中国电信卫星通信业务与传统地面通信业务的融合研究[D].北京邮电大学,2012.

[4] 龙清清.基于SCPC/DAMA的VSAT网络带宽调度算法研究[D].西安科技大学,2013.

[5] 慕名.VSAT卫星通信的个性化生存之道[J].中国电信业,2014(1).

卫星通信论文范文6

【关键词】卫星通信;自动跟踪;MSP430单片机

0.概述

卫星通信作为当今通信传输领域的三大支柱之一,以其传输距离远,覆盖范围大,通信方式灵活多样,以及不受地理和自然环境影响而成为应急通信的主要手段。近年来,车载卫星通信成为油气田应急指挥系统中的重要通信方式之一,它可以在现场迅速展开天线,并快速自动寻星,提供迅速、有效的即时通信,保障了油气田生产过程中突发事件时的应对能力。现在,车载卫星通信系统作为一种小型化的能实现自动寻星和跟踪锁定的卫星通信系统,主要呈现出业务临时的特点,这就面临着如何快速,准确的找准卫星的问题。本文以基于MSP430的车载GPS终端与电子罗盘相结合为例,阐述车载卫星系统寻星及跟踪锁定功能的实现。

1.基本原理

本系统的核心为天线快速跟踪平台,能实现自动对星,跟踪锁定卫星信号。该平台将天线伺服控制系统和机械传动系统整合在一起,通过高灵敏度的传感器感知系统的方位,俯仰和极化角度值,并通过坐标变换和耦合分解计算出天线转动的补偿角度。

2.硬件部分

天线控制系统框架图

天线伺服控制系统核心采用T I 公司的MSP430F149 单片机。该单片机是一种超低功耗的混合信号控制器,具有16 位的RISC结构,CPU 中的16 个寄存器和常数发生器使MSP430 微控制器能达到最高的代码效率,在8MHZ 的晶体驱动下,指令周期为125us。灵活的时钟源可以使期间达到最低的功率消耗;数字控制的振荡器(DCO)可使元件从低功耗模式迅速唤醒,在少于6us的时间内激活到活跃的工作方式。片内的A/D 转换器有较高的转换速率,最高可达200kbps。为了能够快速准确的采集数据,采用美国KVH 公司生产的C100 电子罗盘,它采用磁通门技术,航向精度可达到0.5°以内,通过其数字接口,可提供地球磁场X、Y 轴的水平分量,通过电子罗盘,来采集天线起始方位数据。利用G-503 GPS 获取天线系统所在地的经纬度。利用AT-201-SC倾角仪测量天线的倾斜角度,倾角仪通过硅微机械传感器测量以水平面微参面的双轴倾角变化,输出传感器相对于水平面的倾斜和俯仰角度。极化的调整使用的是直流电机,通过采集极化电位器的电平值,来得到相应的极化角度。方位和俯仰通过步进电机进行驱动,通过减速齿轮和齿轮带带动天线运动。通过MAX202EWE 和F16V8 组成的片选电路进行GPS,倾斜仪数据,电子罗盘数据的信号通道的切换。通过信标接收机来识别卫星信标信号。

3.软件部分

系统加电开机后,首先进行主控单元MSP430F149 的初始化,包括端口,模数转换,时钟,定时器,串口等的初始化。初始化完成后,读入倾斜仪数据,并进行判断。一般情况下,天线最初都处于收藏状态,倾斜仪的读数为负,天线的俯仰需要上抬,使天线俯仰转动轴平行于水平面,天线的方位轴线垂直于水平面。此时主控电路会读入GPS 和电子罗盘数据(AL)。GPS 所得到的系统所在地的经纬度为(θL,ΦL), 卫星的经度用 表示。通过以下的公式计算出天线所在地的理论方位角(θs),俯仰角(Az)和天线馈源的极化角度值(Pol):

Az=tan-1 (1)

EL=tan-1

(2)

通过和可以判断出天线的走步方向及走步的角度值。当天线走到理论方位后,天线会上抬到理论俯仰角。然后会把馈源转到理论极化角。由于理论值和实际值存在着一定的误差,所以在天线走到理论位置后,方位要在理论方位正负15°内进行搜索,俯仰方向会在上下5°内进行搜索。当接收的信标信号的agc电平与背景噪声的差值大于门限值的时候,天线便进入跟踪状态。接下来天线根据信号电平的变化进行螺旋式搜索,轨迹由大变小,直到信标信号agc 电平最大,此时天线便进入锁定状态。我们可以认为天线已经对准了卫星。如果天线在搜索状态时没有找到卫星,会重新回到理论位置,进行新的搜索,如此循环,直到最后锁定卫星。

4.结语

本文给出了车载卫星定位系统的硬件与软件的整体实现方式。经试验证明,本套系统具有很好的性能指标。能够快速准确的找准卫星,具有很好跟踪性能。

【参考文献】

卫星通信论文范文7

关键词量子;墨子号;量子通信卫星;量子通信

2016年8月16日凌晨1时40分,世界首颗量子科学实验卫星“墨子号”由我国酒泉卫星发射中心成功发射。全国人们为此欢呼雀跃,各大媒体也争相报道这一科研壮举。目前,我国已经成为世界上首个实现太空一地面量子通信的国家,然而对于普通人来说基于量子物理学发展而来的量子通信技术依然是晦涩难懂的深奥科学。那么,我们便基于量子卫星的发射来谈一谈量子卫星所涉及的基本科学问题。

1量子卫星

1.1量子卫星“墨子号”名称的由来

在我国古代,墨子先生不仅创立了墨家学说,更是在传世的《墨经》一书中提出了“光学八条”的理论。在“光学八条”中不仅描述了我国古代人民对光线的认识,也设计出了我国最早的小孔成像实验,这是我国有关光学研究的基础。为了纪念墨子先生,我国发射的全球首颗量子科学实验卫星便被命名为“墨子号”。

1.2“量子”的定义

在1900年,著名的物理学家普朗克为了解释黑体辐射现象提出了一个假设,即黑体辐射的能量只能取某一基本能量的整数倍。基于这一假设,在之后几十年的研究中,研究者们陆续发现其他物理量也表现出了不连续的量子化现象,那么这些物理量中所存在的最小的基本单位便可以称之为量子。量子理论的提出严重地冲击了古典物理学,到20世纪早期,法国物理学家德布罗意便在普朗克

爱因斯坦的光量子论和玻尔的原子论的启发下建立了量子力学理论。量子力学在现代科学技术中的多个领域中均有应用和突出贡献,而量子通信技术也是基于量子力学发展而来的,对未来科学技术和文明的进步具有重要意义。

1.3量子通信

量子通信是利用量子态和量子纠缠效应进行信息或密钥传输的新型通信方式。量子通信的主要目的便是保证信息传输过程中的无障碍传送和信息安全。而在量子通信技术研究之前,人们为了保证传输信息过程中的安全问题,便选择对所传输的信息进行加密。信息加密便是将我们要传输的信息(“明文”)转化成别人不可识别的乱码(“密文”)。在20世纪前中期,信息加密技术依然有其优越之处,也是人们普遍使用的方法。但是,电子计算机的出现使基于特定参数所建立的密钥并不再安全。随着现代电子计算技术的发展,直至量子计算机的研制成功,计算机的能力急剧加强,那么这种基于基本算法的信息加密技术在量子计算机面前形同虚设。为了保障新时代背景下的信息安全,量子通信技术得到快速发展。量子通信是基于早期的对称密码:“一次一密”。一次一密的概念在1917年由Vernam提出,然后于1949年被Shannon证明是无条件安全的。随着量子理论的发展,在1984年,科学家Bennett和Brassard首次提出了第一个实用性的量子密码的通信协议,该协议以两者的名字命名。在其后,美国科学家完成了世界上第一个量子信息传输实验,从此量子通信技术进入了蓬勃发展的时期。在1995年,我国中科院物理所在实验室内完成了试验性质的量子信息传输实验。进入21世纪之后,量子通信技术蓬勃发展,先后实现了远距离信息传输和量子密码传输。

量子通信技术在信息传输的安全性和传输能力上具有极大的优势。首先,在利用量子通信技术传输信息的过程中,由于信息的载体是光量子,而光量子的量子状态是难以截获的,因而利用量子通信传输的信息是不可能被盗取的。在现有的技术条件下,利用量子通信技术传输的信息是无条件安全的。其次,在量子通信过程中,量子态隐形传输技术可以实现无障碍通信。所谓的量子m缠态,便是两个相互纠缠的粒子,当其中一个粒子的状态发生变化时,另一个粒子的状态会立即发生相应的变化。这种无视空间距离的和即时的信息传输能力是量子通信的巨大优势。

1.4量子通信卫星

量子通信卫星是量子通信技术中的重要硬件设施。简单来说,量子通信卫星的作用就是为传输的信息分配密钥。量子通信过程中,负载信息的光量子在传输的过程中会逐渐衰减直至消失,因此光量子的传输存在着距离的限制。一般而言,当光量子在空气中传播100km时,光量子的信号已经难以检测到了。但是,量子通信卫星在太空中进行光量子传输时,光信号在到达地表之前仅仅需要经过10km左右的大气层,地面基站可以轻松地收到量子通信卫星发射的信号。量子通信卫星先向地面基站发送量子密钥,经过比对之后建立绝对不可破译的量子密钥,继而拥有相同量子密钥的两个地面基站,便可以把已经加密的信息通过传统的信息传输方式(如互联网、无线电话等)互相传输,而且所传输的信息也是绝对安全的。量子通信卫星的使用可以实现全球距离的信息传输。

2我国量子通信技术的发展

1)我国国家政策和战略布局高度重视量子通信技术的研究和发展。量子通信技术已被列入国家“十二五”科技发展规划纲要中,属于国家重点发展的具有引领新兴产业发展潜力的前沿技术。

2)我国的量子通信技术布局较早,发展较快,成果也更为显著。早在1995年,中科院物理所便在实验室内完成了我国首个的量子密钥分发实验演示。在其后,我国先后成立了中国科学技术大学量子物理与量子信息研究部、中国科学院量子技术与应用研究中心和中国科学院量子信息与量子科技前沿卓越创新中心。这些研究中学的成立将会进一步推进我国量子通信技术领域的技术进步,使我国的量子通信技术研究始终走在全球前列。

“墨子号”卫星的发射仅仅是开始,在未来更多的量子卫星将会发射升空,进一步为我国建立洲际量子通信,乃至全球量子通信网络。

卫星通信论文范文8

【关键词】微波与卫星通信;多维立体互动;教学模式

《微波与卫星通信》是电子信息工程无线通信方向必须的一门核心专业基础课程。该课程介绍微波与卫星通信的基本原理、微波与卫星通信技术以及电波传播原理等三大部分的知识,具有极强的理论性和抽象性。通过本课程的系统学习将有助于移动通信、射频通信电路、无线通信电波传播与天线技术等后续专业课程的开展。为此,本文就该课程的理论与实践的联合培养模式、专业知识衔接、多维立体互动教学和对分易教学平台的应用开展探讨。

一、理论与实践联合培养模式探究

本课程的教学目标在于:通过对《微波与卫星通信》基本原理的剖析式分析,要求学生掌握微波与卫星的基本概念、特征和系统结构,了解微波与卫星通信区别于其他无线通信技术的最基本的特点;通过学习微波与卫星通信的基本技术,要求学生掌握《微波与卫星通信》常用的调制与解调原理、信道编码技术、多址技术;通过学习《微波与卫星通信》无线电波传播原理,要求学生掌握电磁波的传播特性、电波传播链路的计算与设计。可以看出,《微波与卫星通信》也是一门实践性较强的实训课程,若学生仅限于学习书本上的基本原理、常用通信技术以及电波传播等理论知识,并不能解决与《微波与卫星通信》相关的复杂工程问题。鉴于此,该课程需要开设一定课时量的实验,学生可以熟悉微波与卫星通信的基本技术,掌握常用微波电路系统的测试方法和设计思想,实地测量并分析实用的微波电路部件,包括放大器、各种滤波器、混频器和功放器等输出的时域和频域信号。通过使用卫星通信收发平台、测试软件及分析仪器,对微波电路系统进行测量和设计可以培养学生的操作能力、分析能力、知识的应用能力、协作能力等综合素质,使学生对工程性实践操作有更明确、更深刻、更直观的认识,从而为学生的工程实践应用奠定基础。

二、专业知识衔接,提高教学效果

该课程需要扎实的数理基础和抽象思维,因此在前期导向课程的教学活动中,比如大学物理、通信原理、移动通信等,应对相关的基本知识点做介绍。例如大学物理中的麦克斯韦方程组知识点在电波传播中的衔接;地面移动通信中常用的调制解调技术与卫星通信背景下调制解调方案的指标差异。除了与前导向课程的衔接,还需要结合空天地海一体化技术的发展,增加该技术领域的发展前言,激发学生对课程的兴趣,比如增加卫星定位、导航、深空通信、临近空间、水声通信等相关背景和关键技术的介绍。

三、以学生为主体,激发能动性

近年来,高等院校在教育教学改革方面进行了积极探索,取得了一定的成绩,但仍是在以往教育机制上做的延续,因而教育模式还存在弊端,这种弊端主要体现在忽视了学生的主体地位,未能激发学生学习的主动性和能动性。为此,我们应该结合日常的教学活动,将创新性的多维立体互动式教学模式应用到理论与实践课程教学活动中[1][2]。《微波与卫星通信》课程中的重点知识点的理论性比较强,仅在有限的学时中,让学生对微波与卫星通信的基本原理有深入的理解尤为困难。若将学生作为课堂教学的主体,结合多样化、多维度和互动式的教学模式,将会改变原有的一些固定教育方法。举例来说,在讲授卫星通信中的信道分配和多址接入时,可以等效为各楼层教室的使用时间、使用群体和群体语言等。

四、使用现代多媒体技术改革教学模式

随着通信技术的快速发展,各种先进的现代化多媒体技术应运而生。这些技术改变了传统的灌输式教学方法,不再只强调教师对课堂的主导。对分易是一种新型的教学平台,适合多种教学模式,是一款服务于高校教师的技术平台。在《微波与卫星通信》课程管理中,利用此平台能够将课堂教学中的框架、重点、难点和讲解内容展示给学生,同时,学生课后也能自主性、个性化的独立学习或者开展小组讨论和交流。此外,在课程中,还可以利用平台的灵活性、快捷性、实时性和可控性等特色进行作业批阅、课后师生互动、课堂反馈和课堂分组等管理。结论:通过以上对《微波与卫星通信》课程内容设计与教学模式的探索研究,我们以学生为主体,结合电子与信息专业应用型学生的特点调整理论与实践教学环节,重点开展理论与实践的联合培养。同时,采用多维立体互动的教学模式,以线上慕课微课、线下对分易平台提高学生对课程的热情和学习的积极性,管理课程教学,获得较好的教学效果。同时,通过前向与后续课程的衔接,使学生掌握电子技术基础知识体系和信息通信领域的基本理论与方法,从而具有运用理论知识解决复杂工程问题的能力。

参考文献

[1]邱格磊.“多维互动式”教学机制的探索与实践—以《金融法》课程为例[J].海峡法学,2016,第1期,99-104页.

卫星通信论文范文9

关键词 雨衰;Ku波段;卫星通信;通信质量

中图分类号:TN927 文献标识码:A 文章编号:1671-7597(2013)24-0063-01

使用Ku频段进行卫星通信可以在发挥卫星通信覆盖区域广,机动性强等优势的基础上增强通信信号的功率,降低地面微波对通信信号的影响。但是Ku频段无线通信的一个重要缺点是该频段信号在穿越密集雨区时会受到严重的干扰,即会出现雨衰现象,使得通信可靠性与有效性大大降低。为增强Ku波段的卫星通信质量就必须对雨衰问题进行研究,并根据雨衰的成因和特点制定适当的抗雨衰措施,降低雨衰对通信信号的影响。

1 雨衰的形成机理及其对Ku频段卫星通信的影响

1.1 雨衰的形成机理

Ku频段无线信号穿越雨区时,密集的雨滴会吸收一部分无线信号的能量,还会对无线信号产生散射,散射后的无线信号进而会导致大面积的无线电干扰,使得无线电波出现去极化效应,这一现象即为雨衰。

Ku频段信号在穿越雨区中的衰减具有非选择性和缓慢的时变特性,雨衰由雨滴直径与无线信号的波长的比值决定,当无线信号波长大于雨滴直径时,雨衰主要体现为散射,当无线信号波长小于雨滴直径时,雨衰主要体现为吸收损耗。无论雨衰体现为哪种特性,都会影响无线信号在传播方向的传输特性。

理论分析和实践研究表明,在Ku波段的无线信号穿越中雨以上的降雨区域时所出现的衰耗会非常明显,当穿越长度为10 km时,衰耗可达2dB。当降雨区域为暴雨时,Ku波段无线信号的雨衰可达10dB,降雨强度与雨衰幅度成正比关系。

1.2 去极化现象

降雨除会对Ku波段信号产生衰减外,还会使得信号出现去极化现象,若无线信号为单极化传输系统,该现象的影响并不明显,但是对于采用正交极化复用的双极化传输系统而言,该现象会大大增强正交极化信号间的相互干扰。

相关资料表明,Ku波段无线信号穿越暴雨区(雨区高度为2 km)时所出现的微分衰减可达2dB,正交极化系统受其影响会出现极化隔离度降低等情况,进而使得信号间出现极化误差,干扰增加。

2 抗雨衰相关措施分析

2.1 增大链路备余量

预留一定的备余量是无线通信系统链路设计中的一种常见方法,Ku频段的卫星通信链路中的预留备余量通常为6dB左右。对于降雨较少区域,该余量完全能够满足抗雨衰要求,但是在某些降雨较多区域,则无法完全依靠该方法实现卫星通信的抗雨衰。增大余量的最大不足之处在于会占用过多的卫星通信资源,且在无降雨时会出现资源的浪费。

2.2 功率控制

依照通信系统特性为Ku频段卫星通信系统配置上行链路自适应功率控制或自动功率控制等功能可以有效降低雨衰对卫星通信系统带来的影响。

自适应的上行链路功率控制实现原理为:地球站对卫星信号强度进行监测,并根据监测结果计算出通信链路中的降雨损耗,依照该计算结果对地球站的发射功率进行动态调整,从而达到雨衰补偿的目的。该方法不仅能够提升系统的通信容量,还能够有效提升卫星通信信号的可靠性。具体的,上行功率控制又可以分为开环和闭环两种。开环功率控制是利用地面站所接收到的Ku频段无线信号的电平变化量来对下行链路的雨衰值进行测量,进而控制上行发送信号的衰减值,实现上行功率控制。该功率控制方法实现简单,但是控制精度有限。闭环功率控制是地面站接收到Ku频段无线信号后将该信号与参考信道信号的S/N的值进行比较,然后实现上行发送信号的功率控制。该功率控制方法控制精度较高,但是实现成本也比较高。

自动功率控制的实现原理为:以卫星通信的网管系统为参考基准,对地球站的接收电平值进行实时测量,并将测量值与参考点评进行比较,然后将比较结果返回给地球站,控制地球站更改发送信号的输出功率。这种方法不仅能够有效提升卫星通信系统的稳定性和可靠性,还能够在一定程度上节约无线资源,是一种高效的抗雨衰方式。

2.3 信道编码与传输速率控制

对信号进行编码能够有效降低无线信号在高衰减信道中的传输误码率。降低编码率还能够提升编码增益,但是编码率的降低是有一定限度的,超出该限度,即便再降低编码率也不会使得卫星系统出现大幅度的增益改善,反而会使得系统容量减小,影响通信效果和数据传输速率。传输速率自适应控制也是一类有效的抗雨衰措施,降低传输速率可等效为提升信道容量,实现Ku频段信号的抗雨衰。但是该方法同样存在一定的适用范围,不能无限制增强抗雨衰效果。

2.4 空间分集技术

空间分集技术是近几十年来所提出的一类重点技术,该技术的实现原理为相隔一定距离部署多个地球站,这些地球站既可以对信号进行单链路接收也可以进行分集接收,在雨衰较为严重时采用分集接收可有效提升卫星通信系统的抗雨衰效果。需要说明的是,该技术的实现成本较高,需要较为复杂的网络控制技术。

2.5 极化方式与天线选择

由于Ku波段信号穿越雨区时会出现去极化现象,故为提升卫星通信系统的抗雨衰性能,还可以从信号极化方式和接收天线选择方向进行考虑。理论分析可知,随着雨滴体积的增大,雨滴对水平极化波的衰减更大,故对于通信频段高于10GHz的无线信号而言,可以通过垂直极化的方式获得更好的抗雨衰性能。同时,接收天线的增益与其口径大小之间也存在着一定的联系,即大口径的接收天线可以获得更高的接收增益,在雨衰较为严重的地区可以通过适当增大接收天线口径的方式提升Ku波段通信链路的抗雨衰性能。

3 总结

Ku波段为我国卫星通信所采用的主要频段之一,但是该频段通信信号易受到降雨的影响出现衰减,甚至会造成通信中断。本文上行站、信道传输以及下行站等三个方面对Ku波段卫星通信的抗雨衰补偿措施进行了分析,综合应用上述措施可以有效提升卫星通信的通信质量和传输可靠性。

参考文献

[1]庞宗山,路平.Ku波段卫星通信雨衰分析及对抗措施[J].科学技术与工程,2007(9).