HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

通信论文集锦9篇

时间:2023-03-22 17:32:45

通信论文

通信论文范文1

我国相关行业主管部门高度重视5G技术的发展,2013年2月,由工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立了IMT-2020(5G)推进组,其组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构,是聚合中国产学研用等各方力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。目前,各大主流通信厂商和研究机构都纷纷提出了5G的技术方案,这些方案的技术思路和侧重点都各不相同。本文对各种技术进行了梳理,将5G的关键技术分为4个类别进行阐述,即新型多天线传输技术、高频段传输关键技术、密集网络关键技术和新型网络架构。

1新型多天线传输技术

随着通信产业的发展,频谱资源日益稀少,因此,提高频谱利用率成为未来通信技术发展的重要方向。在这种背景之下,基于大规模天线阵列(LSAS:LargeScaleAntennaSystem)和大规模MIMO(MassiveMIMO)等通信技术被相继提出。其中,利用LSAS技术可以带来巨大的阵列增益和干扰抑制增益,使小区总的频谱效率和边缘用户的频谱效率得到极大的提升。同时,LSAS技术还可以实现对空间位置的划分,利用空分多址,同时服务多个用户。目前,在LTE及LTE-Advanced(Rel.8/9/10/11)中,已经推出了对MIMO天线的诸多增强性改进,用以满足对小区容量和下载速率增长的需求。但是,在LTE-Advanced中,基站下行最大只支持8根发送天线,其对于性能的提升还是十分有限的。在未来的5G中,将引入有源天线技术(AAS:ActiveAntennaSystem),通过这一技术,将更容易实现小区基站上MassiveMIMO的部署,从而实现3D波束成形,相关技术可以显著增加系统容量,满足日益增长的数据业务需求。

具体而言,当前LTE基站的多天线只在水平方向排列,只能形成水平方向的波束,并且当天线数目较多时,水平排列会使得天线总尺寸过大从而导致安装困难。而5G的天线设计参考了军用相控阵雷达的思路,目标是更大地提升系统的空间自由度。基于这一思想的LSAS技术,通过在水平和垂直方向同时放置天线,增加了垂直方向的波束维度,并提高了不同用户间的隔离(如图1所示)。同时,有源天线技术的引入还将更好地提升天线性能,降低天线耦合造成能耗损失,使LSAS技术的商用化成为可能。由于LSAS可以动态地调整水平和垂直方向的波束,因此可以形成针对用户的特定波束,并利用不同的波束方向区分用户(如图2所示)。基于LSAS的3D波束成形可以提供更细的空域粒度,提高单用户MIMO和多用户MIMO的性能。同时,LSAS技术的使用为提升系统容量带来了新的思路。例如,可以通过半静态地调整垂直方向波束,在垂直方向上通过垂直小区分裂(cellsplit)区分不同的小区,实现更大的资源复用(如图3所示)。

2高频传输技术

由于各类无线通信和无线应用的快速发展,各国的低频段频谱资源都已经十分紧张,很难找到适合5G技术应用的新频段。同时,为了保证5G技术所需要的更大传输带宽,各种射频器件也势必要调整到更好的工作频率上。因此,未来5G技术须向高频段扩展,尤其是毫米波频段,该频段频谱资源丰富,具有连续的大带宽,可以满足短距离高速传输的需求。

目前,各大通信企业和研究机构都在积极进行相关研究工作。例如,韩国三星公司已经对28GHz和37GHz频段的信道传播特性进行了信道测量,并研发了基于28GHz频段的系统设备样机,经过实地验证,样机已经达到了1Gbit/s的下载速率,证明了高频段在移动通信特定场景下应用的可行性。但是,由于电磁传播的特性,高频传输目前还面临很多实际的困难。由于空气的吸收作用,频段越高的电磁波路径损耗越大。例如,60GHz的电磁波路径损耗要比5GHz的电子波高出20多个dB。同时,高频段传输以直射路径为主,绕射能力较差,当基站与用户间的直视径受到阻挡,传输性能将显著下降。另外,高频段器件的技术难度较大,相关工艺还不成熟,因此,高频段相关器件较少且价格较贵,给高频段通信带来很大的技术挑战。

3密集网络技术

为应对未来持续增长的数据业务需求,采用更加密集的小区部署将成为5G提升网络总体性能的一种方法。通过在网络中引入更多的低功率节点可以实现热点增强、消除盲点、改善网络覆盖、提高系统容量的目的。但是,随着小区密度的增加,整个网络的拓扑也会变得更为复杂,会带来更加严重的干扰问题。因此,密集网络技术的一个主要难点就是要进行有效的干扰管理,提高网络抗干扰性能,特别是提高小区边缘用户的性能。

密集小区技术也增强了网络的灵活性,可以针对用户的临时性需求和季节性需求快速部署新的小区。在这一技术背景下,未来网络架构将形成“宏蜂窝+长期微蜂窝+临时微蜂窝”的网络架构(如图4所示)。这一结构将大大降低网络性能对于网络前期规划的依赖,为5G时代实现更加灵活自适应的网络提供保障。

与此同时,小区密度的增加也会带来网络容量和无线资源利用率的大幅度提升。仿真表明,当宏小区用户数为200时,仅仅将微蜂窝的渗透率提高到20%,就可能带来理论上1000倍的小区容量提升(如图5所示)。同时,这一性能的提升会随着用户数量的增加而更加明显。考虑到5G主要的服务区域是城市中心等人员密度较大的区域,因此,这一技术将会给5G的发展带来巨大潜力。

当然,密集小区所带来的小区间干扰也将成为5G面临的重要技术难题。目前,在这一领域的研究中,除了传统的基于时域、频域、功率域的干扰协调机制外,3GPPRel-11提出了进一步增强的小区干预先部署的小区临时部署的小区扰协调技术(eICIC),包括通用参考信号(CRS)抵消技术、网络侧的小区检测和干扰消除技术等。这些eICIC技术均在不同的自由度上,通过调度使得相互干扰的信号互相正交,从而消除干扰。除此之外,还有一些新技术的引入也为干扰管理提供了新的手段,如认知技术、干扰消除和干扰对齐技术等。随着相关技术难题的陆续解决,在5G中,密集网络技术将得到更加广泛的应用。

4新型网络架构

未来的5G网络必将是多种网络共存的局面,融合多种通信方式将成为一个显著的特点。由于移动通信网络的演进特性,未来的网络将包括3G、4G以及WLAN网络等多种制式,是无缝、异构、融合的网络。因此,未来5G将形成蜂窝与Wi-Fi融合组网的新型网络架构,可以有效利用非授权频段实现业务分流。

另一方面,随着移动通信业务量的不断增长,基站所承担的业务量和计算量也越来越大。为了减轻基站压力,提高传输速度,D2D(DevicetoDevice)网络的概念被提出。目前,在LTERel-13中已经开始讨论D2D技术,未来也将成为5G中的关键技术。D2D技术即终端直通技术,指终端之间通过复用小区资源直接进行通信的一种技术。D2D技术无需基站转接而直接实现数据交换或服务提供(如图6所示),可以有效减轻蜂窝网络负担,减少移动终端的电池功耗、增加比特速率、提高网络基础设施的鲁棒性。然而,在蜂窝通信系统与D2D通信系统融合的系统中,网络需要决定何时启用D2D通信模式,以及D2D通信如何与蜂窝通信共享资源,是采用正交的方式,还是复用的方式,是复用系统的上行资源,还是下行资源,这些问题也增加了D2D辅助通信系统资源调度的复杂性。

此外,随着物联网技术的飞速发展,未来网络中不仅有人与人的通信,还将产生大量机器与机器(M2M)通信。随着M2M终端及其业务的广泛应用,未来移动网络中连接的终端数量会大幅度提升,会引起接入网或核心网的过载和拥塞,这不但会影响普通移动用户的通信质量,还会造成用户接入网络困难甚至无法接收入。因此,如何优化网络,使之能适应M2M应用的各种场景是未来M2M需要解决的关键。目前确认的方案包括以下几种类型:接入控制方案、资源划分方案、随机接入回退方案、随机接入回退方案、特定时隙接入方案、Pull方案等,另外,还有针对核心网拥塞的无线侧解决方案。

5结语

通信论文范文2

“数据通信与计算机通信网”课程的内容知识点有些零散,但可以围绕计算机网络分层体系结构将其整合。民航系统中存在大量的地—空和地—地数据传输,拥有许多类型的通信网络。如:X.25数据业务网、卫星通信系统、飞机通信寻址报告系统(ACARS)以及航空电信网(ATN)等。如果将其引入课程教学,抽象的理论知识就可以具体化、形象化,再结合实际科研项目将其实现方法与步骤展示给学生,就可以很好地实现理论教学与行业应用的无缝衔接。基于此,笔者设计的课程教学过程如图1所示。

2课程教学实例

ACARS系统是目前国际民航广泛应用的地空数据链通信系统,通常工作在甚高频波段,用机与地面之间的实时双向数据传输,可实现航空公司、空管部门等地面用户对飞机的运行管理与控制。由于ACARS系统报文中含有许多重要的数据信息,所以该系统是当前民航领域在用的重要通信系统。这里以ACARS引入课堂教学为例,阐述课程教学的具体实施过程。(1)基本知识点的讲述及分层归纳“数据通信与计算机通信网”课程包含数据通信基础部分的教学内容,具体包括信号传输特性、传输介质、数据编码、差错检测与控制、接口特性以及多路复用等。这些内容分布在不同的章节,比较分散,初学者不容易整体把控。如果我们将其与网络层次体系相对应,就可实现知识点分层归纳和对比讲解,如差错控制属于数据链路层实现的功能,而编码与调制、接口特性属于物理层实现的功能等。(2)引入ACARS系统学生有了数据通信基础部分相关知识之后,教师立即将ACARS系统引入课堂教学。在简单介绍ACARS系统功能及在民航中的应用之后,重点说明ACARS系统中所包括的课程所学知识点。比如,ACARS数字信号采用MSK调制方式,上下行报文按照字符形式装配,其中的接收地址与发送地址由飞机标识码表示[5],差错检测方式为循环冗余校验码(CRC),多路访问采用非坚持-载波侦听多路访问(CSMA)机制。为了实现数据的可靠传输,ACARS系统采用停等ARQ方式。表1给出了两者部分知识点的对应关系。结合实际民航数据通信系统,学生对于所学的抽象的理论知识不再感到遥不可及,而是实实在在存在于应用系统之中。(3)科研项目引入教学教师随后可将相关的科研项目介绍给学生。笔者曾参与完成ACARS系统仿真项目,教学过程中除了通过图片、图形或者动画等形式介绍项目背景,展示相关的研究成果外,还将部分实现方法和开发流程介绍给学生。比如,该项目仿真软件编程语言采用C#,开发平台为VisualStudio2008。模拟ACARS系统手动发送报文功能的流程以及相应的功能函数说明如图2所示。除了课堂教学外,部分小的功能模块(如CRC码的实现)可直接让学生参与实践,课后再让学生参观实验室和研究基地。通过了解科研项目,学生对知识点的理解会更加透彻,不仅明白所学知识用在哪里,如何重要,而且也知道在工程上如何实现,这很容易激发他们对科研工作的兴趣。

3结语

通信论文范文3

1.1PDH光纤通信在铁路通信系统中的应用

光纤通信技术之所以在铁路通信系统里发挥重要作用,是因为当前对光纤通信技术的划分十分精细,在各个铁路通信系统里都会使用相应的光纤通信技术,达到最理想的通信效果。PDH光纤通信作为十分重要和关键的方面,能有效清除铁路通信系统里存在的隐患以及漏洞,确保铁路通信系统的正常与稳定。但PDH存在标准不一、复用结构过于复杂以及网络管理功能较弱的问题,所以其难以得到长远、有效的发展。

1.2SDH光纤通信在铁路通信系统中的应用

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.3DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

2结语

通信论文范文4

管理心理学是一门研究在组织管理活动中人们的行为以及心理活动的学科,管理心理学综合了心理学和管理学,管理心理学是以组织管理活动中的人为研究对象,以新烈血为研究较多,对组织活动中的群体以及个人的行为和心理活动的规律进行研究。管理心理学理论在现代通信企业人力资源管理中的应用主要表现在以下几个方面:

(一)管理心理学理论在通信工程企业选材方面的应用1.岗位设计。通信工程企业的岗位分析是进行员工选拔、薪酬设计、培训、绩效考核以及职业生涯规划的基础,通过岗位分析,能够解决两方面的问题:其一,获得员工的准确信息,即了解岗位任职要求,包括员工的个性、心理、知识结构、认知水平、行为举止等;其二。获得工作的准确信息,即了解工作的条件、工作的环境以及工作的职责等,通过将管理心理学应用在通信工程企业的岗位设计中,能够将员工的技能、经验、认知水平、成就、价值观、个性等素质纳入其中,根据管理心理学的基本原则,进行综合的分析,尽可能的做到岗位职能和心理特征最佳的匹配。2.员工的甄选与配置。实现将优秀的员工配置到相应的岗位,是通信工程企业人力资源管理的重要任务,一个企业在甄选员工时,应该应用管理心理学理论,充分的掌握员工的价值观、性格、气质、感情以及认知等心理特征,并通过一定的测试手段准确的掌握员工的综合素质,因此,通信工程企业在甄选员工时,应该以管理心理学理论为指导,通过不同的测试甄选员工,将其配置到相应的岗位上,实现人力资源的最优化管理。

(二)管理心理学理论在通信工程企业用才方面的应用1.岗位适应。通信工程企业员工所在的岗位,应该根据员工的工作能力、个性特征以及综合的技术水平,并且对相应岗位上的员工进行沟通,对员工进行相应的培训工作,由于人的可塑性很强,通过培训,能够使员工能够更加适应岗位。2.提升工作的激励作用。通信工程企业的激励因素和员工的工作积极性具有密切的联系,并且一定激励的因素,能够激发员工的主动性。因此企业应该用工作扩大化、工作丰富化来充分的激发员工的潜能。3.提升员工的发展能力。当人们在选择岗位时,通常会选择能够发挥自己的潜能,提升自己能力的岗位,因此,企业想要留住员工,就应该充分的利用员工的这种心理,这样才能为企业留住人才,为自身企业的组织发展奠定基础。

(三)管理心理学理论在通信工程企业育才留才方面的应用通信工程企业的人力资源管理中管理心理学理论的应用,企业领导通过树立良好的榜样形象,领导应该重视对员工的理解、关心和尊重,职工心理得到更大的安全,然后创造公平合理的工作环境,让员工在舒适、公平、合理的工作环境中集中精力的工作,提升员工的工作积极性,从而实现企业人力资源的有效管理,增加员工与企业的凝聚力,为员工留下更多的人才,促进企业更快、更好的发展。

二、结束语

通信论文范文5

[论文摘要]:通信电源是向通信设备提供交直流电的电能源,是整个通信电信网的能量保证。通信电源系统由交流供电系统、直流供电系统和相应的保护系统构成。通信电源系统的设备多,分布广,不仅单个电源设备的可靠性会影响系统的可靠性,电源系统的总体结构也会对自身的可靠性造成很大的影响。

一、通信电源的发展现状

(一)供电系统的现状

通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设备提供能源。通信电源必须具备智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。

(二)通信电源设备的更新换代

近年来,随着技术的进步,特别是功率器的更新换代,新型电磁材料的不断使用,功率变换技术的不断改进,控制方法的不断进步,以及相关学科的技术不断融合,通信电源在系统的可靠性、稳定性,电磁兼容性,消除网侧电流谐波、提高电能利用率、降低损耗、提高系统的动态性能等等方面都取得长足的进步。

(三)现行通信电源的电路模型和控制技术

目前通信电源的变换电路拓扑结构主要采用双单端电路,半桥电路和全桥电路,各有优缺点。一般认为,在中、小功率场合,采用双单端电路或半桥电路是适宜的;在大功率场合则采用全桥变换电路。

二、通信电源发展趋势

(一)开关器件的发展趋势

电源技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有重要地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。

(二)通信直流电源产品的技术发展市场需求发展

在需求与技术的共同推动下,通信直流电源产品体现了如下的发展态势:

体系架构相当长的一段时间内维持稳定。通信直流电源在相当长的时间内还是维持现有的交流配电、整流器模块(并联)、直流配电、监控单元、蓄电池等为主要组成部分的架构;功率变换模式也将维持现有的高频开关模式,暂时不会出现类似从线性电源到开关电源的阶跃性的变化。

功率密度不断提高。通信一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但配电器件、蓄电池等密度基本维持稳定,一定程度制约了整机系统的功率密度的提高比率。

更高的可靠性。高可靠性是通信电源的最基本要求。随着器件技术、通信电源技术的成熟,以及各通信直流电源设备厂家在可靠性研究上大力投入,通信直流电源产品可靠性呈不断提高的趋势。

按照TRIZ理论(“创造性解决问题的理论”的俄语缩略语)描述的技术系统发展进化规律,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,通信直流电源的核心技术,开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,未来几年甚至十几年内,通信直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,通信直流电源产品就会再出现一个阶跃性的发展,就像开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。

(三)通信用蓄电池技术研究的新进展

通信用蓄电池作为通信系统后备的能源供应手段,其研制、生产和应用技术一直备受世界各国通信行业的重视。随着科技的发展和技术的不断进步,国外正在研制和试验新一代的通信用蓄电池,有的已经进入商用化阶段。这些新的蓄电池,由于其材料、结构和技术上的先进性,在性能上具有传统的VRLA电池无可比拟的优越性。

1.钒电池(VanadiumRedoxBattery)。钒电池(VRB)是一种电解值可以流动的电池,目前正在逐步进入商用化阶段。

2.燃料电池。燃料电池是一种化学电池,也是一种新型的发电装置,它所需的化学原料由外部供给,如氢氧燃料电池,只要外部供给氢和氧,经过内部电极、催化剂和碱性电解液的作用,就能产生0.9V电压的直流电能,同时产生大量的热能.

3.电源监控系统的发展。随着互联网技术应用日益普及和信息处理技术的不断发展,通信系统从以前的单机或小局域系统逐渐发展至大局域网系统或广域网系统,大量人力、物力被投入到网络设备的管理和维护工作上。不过通信设施所处环境越来越复杂,人烟稀少、交通不便都会增大维护的难度,这对电源设备的监控管理提出了新的需求,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此时,数字化技术就表现出了传统模拟技术无法实现的优势,数字化技术的发展逐步表现出传统模拟技术无法实现的优势.

4.通信电源的环保要求。环保问题,一方面的指标是通信电源的电流谐波要符合要求,降低电源的输入谐波,不但可以改善电源对电网的负载特性,减少给电网带来严重污染的情况,还可减少对其他网络设备的谐波干扰。另一个重要方面,是材料的可循环利用和环境的无污染,这方面需要产品满足WEEE/ROHS指令。

在通信电源开发、生产早期,人们主要集中研究电源的输出特性,较少考虑到电源的输入特性。例如:传统的在线式电源输入AC/DC部分通常采用桥式整流滤波电路,其输入电流呈脉冲状,导通角约为π/3,波峰因数大于纯电阻负载的1.4倍。这些谐波电流大的电源给电网带来了严重的污染,使电网波形失真,实际负荷能力降低,对于三相四线制的电网来说,还很有可能因中性线电流过大而出现不安全隐患。

参考文献:

[1]朱雄世,《通信电源的现状与展望》.

[2]《浅析全球通信电源技术发展趋势》.

[3]《通信直流电源发展趋势》.

[4]孙向阳、张树治,《国外通信用蓄电池技术研究的新进展》.

[5]《通信电源技术发展趋势及标准研究方向》.

[6]曾瑛,《浅谈通信电源》.

[7]王改娥、李克民,《谈我国通信电源的发展方向》.

[8]王改娥、李克民,《我国通信电源的发展回顾与展望》.

[9]侯福平,《UPS系统在通信网络中使用的特点及要求》.

[10]《全球通信电源技术发展呈现五大趋势》.

通信论文范文6

依据耦合方式的不同WHBC可分为:①电流耦合,发射端输入人体的信号为电流信号,接收器、发射器的两个电极均需与人体直接接触;②电容耦合,发射端输入人体的信号为电压信号,接收、发射端的两个电极可不与人体直接接触。当前大部分的研究都集中于后者,因此本论文主要介绍电容耦合WHBC系统。当前被认可的基于电容耦合的人体通信机制主要有两种:静电耦合机制和把人体作为波导的电磁波传播机制,大多数WHBC模型基于这两种传输机制建立。另外还有一些WHBC模型是基于实验数据得到的,下面我们简单介绍一下当今主要的WHBC理论和模型。

1.1静电耦合机制及其物理模型

首先我们来介绍WHBC的静电耦合传输机制。发射接收信号的电路、放在人体上或者人体附近的电极、导电的人体(相当于一个电阻)、电极和大地之间的耦合电容可构成一个闭合回路。整个闭合回路可被看作为一个二端口网络,发射端的信号电极和地电极是其信号输入端,接收端的信号电极和地电极是其信号输出端,已知电路中的各电阻及电容的值,就可根据电路知识求出信号的路径损失。由于静电耦合作用(即二端口网络电路中的耦合电容)是该传输原理中的关键所在,因此称该原理为静电耦合原理。其中发送端和接收端信号电极可以直接贴在人体皮肤上或者靠近人体皮肤的邻近区域(例如紧贴衣服上),发送端和接收端的地电极悬空或者贴在皮肤上。但Luˇcev等证明信号电极直接与皮肤接触、地电极悬空的电极结构可以得到最小的路径损失。Xu等根据静电耦合机制设计了一个WHBC通信系统,其系统模型使用了有限元件建模方案。该系统模型包含了大气、人体、发射端电路和接收端电路。其中大气分为三个区:近域区、过渡区和远域区;人体模型则由手臂、胸部、腹部和脚组成,而各器官分别由对应的皮肤、脂肪、肌肉层组成。模型的仿真结果在低频和实际测得的数据相差不大,但在高频段差别就有些大,还需要仔细研究。

1.2人体作为波导的传播原理及其物理模型

有些研究人员把人体看作波导,从电磁波传播的相关原理方面建立人体信道的计算模型。发射机的信号电极与其地电极是电磁波的发射源,人体表面是人体与空气之间的边界面,信号的传输过程可看作一种特殊情况的表面波传输。已知人体表面的电介参数,根据麦克斯韦方程和人体空气边界条件可求出在人体表面各点的电场强度、磁场强度以及路径损失。Fujii等用有限差分时域方法(finitediffer-encetimedomain,FDTD)建立WHBC模型。在FDTD计算方法中,使用了日本成年男性和女性的高精度身体模型。实验中用生物组织固体人体等效模型验证文中提到的理论模型,结果虽还不错,但模型跟真实的人体毕竟不一样,该方法的有效性还需通过真实的人体加以验证。

1.3其它的WHBC传输原理和模型

近期Bae等提出了新的WHBC传输原理,该原理同样把发射端的信号电极和地电极看作电磁波的发射源,但认为仅电磁波的电场可传播信息,电磁波的磁场不起传递信息的作用,同1.2一样利用麦克斯韦方程组可得到人体表面的电强度和路径损失。论文提出的理论很新颖,能够综合现有的两套理论,但其仿真结果和实验结果在低频处却有较大的误差,还需进一步完善。Ruiz等利用实验数据建立了一个WHBC分析模型。方法是从现有的各种分布函数中选择一个与实际测得的路径损失的累积概率分布最接近的一个分布类型,然后用数学方法估计在某一确定距离下该分布类型的参数,接着求出该分布函数的参数与(发射接收)距离之间的关系,从而得到想要的模型。这种方法对硬件设计有一定的指导意义,但由于缺乏内在的物理原理的支撑,有很大的局限性。

2WHBC中的数字基带传输机

除了WHBC的传输理论有诸多进展,WHBC传输机也颇有些硕果。Lont等设计了一个数据速率可调的基于移频键控(frequencyshiftkeying,FSK)的超低功耗数字接收机。Song等则利用0.25μm标准CMOS工艺设计了一个功耗为0.2mW、速率为2Mb/s的数字传输机,其原理图。图中上半部分为发射机,下半部分为接收机。发射机由伪随机二进制序列(pseudo-ran-dombinarysequence,PRBS)产生器、二选一多路复用器和驱动器组成。PRBS是芯片测试时需要用到的功能部件。数字信号可直接通过二选一多路复用器、驱动器传到人体。接收机由接收AFE模块、CDR电路和位错误探测器组成。接收AFE模块用于放大、触发、反向从电极接收到的宽带信号,以恢复二进制数据。CDR电路模块从恢复的二进制模块中提取时钟信号并锁存数据。位错误探测器是芯片测试时需要用到的功能模块。当反向不归零制(non-return-to-zero,NRZ)数据直接输入到人体后,发射端电极产生对称的静电场(分别对应二进制数据1和0),在该静电场的激发下接收端的电极感受到一个由正负脉冲组成的微弱宽带脉冲信号,对这些信号进行放大、触发、反向的操作就可在接收端恢复输入人体的二进制数据。Song等改进了TX的结构,使用了脉冲位置调节模块,把NRZ数据的频带移到10~70MHz。Fazzi等则在RX中增加了相关电路,抑制噪声的能力更强。然而即便如此,这样的通信系统还是很容易受到外界的干扰,需要其它的技术抑制这种干扰,我们将在第3部分中进行讨论。

3WHBC中的干扰及AFH技术

3.1WHBC中的干扰

人体可被看作天线,漂浮的和接地的人体在电磁场中的谐振波长分别为人体身高的2倍和4倍,同时人体的谐振频率峰值不是尖锐的,而是宽广分布的,因此人体天线效应能够将频带分布宽广的射频信号注入到WHBC通信系统中。根据Cho等的实验结果,这些干扰信号在一些环境下(调幅射频塔或者无绳电话附近等)能够把有用的信号淹没,一般的数字传输机不能在这种变换的环境下稳定地工作,需要新的传输机来抑制这些干扰。

3.2AFH原理

WHBC中的干扰随环境变化而变化,但均只占某一有限的带宽。为了增强系统的抗干扰能力,我们把可用的WHBC总带宽根据具体的应用(数据传输速率的要求)平均分成N个不重叠的子带宽,每一个子带宽可看作一个通信频道。最开始所有的通信频道均参与信息的传输,它们均处于跳频序列之中。WHBC设备节点每隔一段时间根据一定的评判原则将跳频序列中所有的频道分为好频道和坏频道。好频道继续使用并等待下一次评判;坏频道从跳频序列中剔除,但一段时间之后系统会重新检查上次被评为“坏频道”的频道的通信质量,只要被评定为好频道,系统又会将其纳入跳频序列之中。其中频道评价准则可以使用接收的信号强度指示(re-ceicedsignalstrengthindicator,RSSI)、分组错误率(packeterrorrate,PER)和载波敏感度(carriersensing,CS)准则。使用的是PER信道评判准则,其中PSR(packetsuccessratio)为分组成功率,Ps为合格频道的PSR阈值。AFH技术源自蓝牙,但AFH在WHBC中的适应性强过蓝牙,因为一般情况下WHBC的覆盖范围仅限于穿戴者的本身,不会产生不同WHBC之间的串扰,而蓝牙ZigBee等则会因为不同设备之间使用相同的通信频道而产生动态频率干扰。Cho等就利用AFH技术设计了适用于人体通信的传输机,达到了很好的抗干扰效果。

4结束语

通信论文范文7

首先要根据区域经济和学校发展定位确定其人才培养目标。天津理工大学中环信息学院是应用技术型本科教育的独立学院,该学院的企业背景是天津中环电子信息集团有限公司(原天津电子仪表局),通信工程专业是学院重要的工科专业,通过校企结合的有效途径,培养该专业学生成为具有一定通信基础知识,具备较高综合素养,能从事生产一线的通信设备制造、应用开发、工程设计与安装、运行维护和管理的现场工程师;其次要适应生源现状。独立学院招收的是本三学生,与国办高等院校的生源相比,无论是在认知程度、综合素质,还是在知识结构、耐力持久等方面都存在一定的差距,这就要求独立学院在人才培养目标定位上充分考虑学生特点;三是在构建实践教学体系的过程中,应遵循由简单到全面、由框架到内容,从手段上,采取硬件与软件相结合的办法来实施,提高学生实践能力和工具软件的使用能力;四是要以培养合格的全面发展的学生为核心,在保证够用的理论基础上,培养出适应性强、受用人单位欢迎的复合型人才,才能真正展示独立学院特色教育培养的成果。

二、实践教学环节设计

构建实践教学体系,要根据通信工程专业的知识和能力结构要求,首先制定出具有一定特色的人才培养方案,然后再系统、科学、周密地规划和设计该专业的实践教学环节。

1.人才培养方案的制定。

通信工程专业的实践教学环节设计要紧紧围绕该专业的人才培养目标。由于通信技术的飞速发展,学院每年要对该专业的人才培养方案进行调整完善,以便培养的学生更适应社会需要,跟上技术发展潮流。我院的做法是利用每年暑期教学工作会议的机会,每个专业从相关企业聘请三位从事该专业的工程技术人员,两位设有同类专业的高校教学管理人员,母体校的专业负责人,加上从事该专业的教师组成四方座谈组,专门讨论该专业的人才培养基本框架,同时确定该专业的实践教学体系的提纲。这种由企业工程技术人员直接参与学校人才培养计划的制定方法也正是我院的特色所在。

2.构建实践教学体系框架。

总结建校以来的办学经验,通过对毕业生的跟踪调查和对企业人力资源部门的调访,参考近几年的文献研究成果,结合人才培养目标要求,重新整合我院通信工程专业实践教学资源,构建了一个相对完整、层次分明的实践教学体系框架。把实践教学分为实践教学环节、实践教学环境、实践教学队伍和实践教学管理四个组成部分,明确了各组成部分对学生能力培养目标及所采取的教学手段。

3.建立通信工程专业实践教学体系。

根据框架结构,合理调整该专业实验项目,精选经典内容,补充近、现代知识,把该专业的能力概括为科学实验能力、综合设计能力、专业实践能力、科研与创新能力,并把这些能力培养落实到具体的课程和实践教学模块中,总体分为实验与上机操作、综合设计实践、现场实习实训、职业技能认证、科技创新、毕业设计六个模块,并且采用四年学习期间实践训练不断线的思路,初步构建了该专业的实践教学体系。

三、采取有效措施、增强综合实践能力的培养

欲达到通信工程专业学生的预期培养效果,保证实践教学体系的顺利实施,每个环节都要有切实可行的保障措施和明确的培养目标。

1.软硬件结合,加强科学实验能力的培养。

基础性实验相对容易,通过该专业主干课程的基础实验可以增强学生的学习信心,确保对理论知识的理解和巩固,也可以激励学生动手实践的积极性,掌握常用仪器仪表的使用技能,如示波器、信号源、直流电源、功率计、频谱分析仪等。专业课程的实验要采用仿真软件和实验箱相结合,通过仿真能达到锻炼学生使用仿真软件的能力。学生设计了系统,在理论上验证方案的正确性,提高了学习兴趣和综合设计能力。值得注意的是如果过多地使用软件仿真,对学生的感性刺激效果不佳。为了更好地锻炼学生的创新思维能力,要适当增加一些综合设计实验,培养学生分析单元电路、模仿设计功能模块的能力。虽然设计性实验比验证性实验增加了难度,但也增加了大部分学生的学习兴趣,由被动学习变为主动思考,创新思维能力得到培养。

2.课程设计与专业设计。

通过课程设计可帮助学生将理论知识与实践技能结合起来,进一步提高学生的专业实践能力,课程设计环节包括选题、任务书下达、设计辅导、撰写设计说明书及成绩评定。目前本专业主要安排了电子技术、C语言、单片机、通信原理、数字信号处理等课程设计。专业设计是提高学生综合实践能力的有效方法,对于通信工程专业的学生,通过电子产品设计与组装,训练了产品设计方法步骤,提高了组装与调试工艺水平,创新能力和实践能力均得到提升。

3.校内专业综合实训。

在校内实训基地开设专项实践周,加强某一专业技术应用能力的培训实践,不论是实习的时间计划还是实践教学内容都能得到充分保障。通过对通信工程专业学生的实训,使学生分阶段接触与专业相关的各项技能,强化知识的理解和运用,使学生成为既具有一定理论水平又具备良好动手能力的专业人才。目前该专业开设了金工实习、电子产品装配工艺、电子产品设计、光纤工程等实践周。

4.校企合作共建学生实践基地。

实践教学体系的社会实践性,决定了社会必然是学校实践教学的必不可少的场所,因此,建立良好的校企“双赢”合作机制,是构建高等教育实践教学体系的重要保障。校外实践基地运行主要采取校企合作的实践教学模式,让学生在生产或毕业实习过程中,直接参与企业生产和管理的各个环节,了解本专业所从事工作的内容以及对人才素质和能力的要求。通信工程专业先后与天津通信广播集团有限公司(原712厂)的移动部、天津光电通信技术有限公司(原754厂)的光纤通信部、天津广播器材厂(原764厂)的产品调试部门、天津智博通信工程公司及网通公司等建立了友好的合作关系。从这些单位聘请有丰富经验的专家、技术骨干为学生讲座、指导实践环节。安排学生到这些单位参观和顶岗实习,提供职业素质训练的机会,增强了工程应用能力和岗位适应能力。在该项目的研究过程中,有两位项目参与人就是来自企业的工程技术人员,所以该项目的特色之二就是“校企合作,共建通信工程专业的实践教学体系”。

5.积极推广职业资格认证制度。

为了给学生就业提供佐证材料,提高就业竞争能力,通信工程专业与天津职业技能鉴定第15所合作进行了电子产品专用设备调试认证,与中兴通讯合作进行了NC认证培训,合格率逐年上升。

6.课外科技创新。

大学生科技创新活动是提高实践教学效果的有效方式之一,电子信息类的科技竞赛主要有全国大学生电子设计大赛、大学生挑战杯科技作品竞赛和一些相关知名企业或公司设立的大学生科技竞赛活动。我院以竞赛带动实践教学,建设了科技创新实验室,设立了大学生科技创新基金,面向高年级成绩优秀、课外科技活动兴趣浓厚的学生,倡导开展科研立项,给“拔尖”学生提供一个良好的学习和研究环境,给学生建立了创新设计能力培养的平台。

7.毕业设计。

毕业设计是本科生教学计划中最后一个重要的实践教学环节,学生通过毕业前期实习,系统、全面地将所学理论知识与实际生产结合起来。毕业设计是学生毕业资格认定的重要依据,是学生在掌握基本理论知识的基础上进行初步专业研究训练的重要环节,也是对学生知识、能力和素质综合考核的重要方式。在毕业设计选题时,指导教师根据自己的教学科研确定设计内容,学生根据兴趣选择方向,经过沟通确定具体设计题目。在毕业设计过程中,每个阶段都要有相应的考评准则。对于通信工程专业的学生采取了以下方式进行毕业设计:(1)学生在校内完成毕业设计。设计选题要符合学生能利用所学知识综合分析、解决实际问题能力培养的要求,加强过程管理与指导,切实提高毕业设计内涵质量;(2)校企合作进行毕业设计。将企业的工程技术人员请到学校来帮助教师参加辅导毕业设计;(3)在企业进行毕业设计。利用学校的校外实习基地,安排学生边实习边做毕业设计,由企业工程师担任辅导毕业设计的导师。为了对毕业设计质量有效把控,无论哪种辅导方式,毕业答辩都要回到学校内统一进行。

四、全面实施实践教学体系的效果

对于通信工程专业的学生从实施实践教学体系以来,教学效果还是相当明显的,毕业生综合素质和受用人单位欢迎程度逐年提高。

1.综合动手能力明显提高。

通过全面实施实践教学体系,该专业的学生学习兴趣逐步提高,参加科技活动和竞赛的人数不断增多,获奖人数逐年增加。建校以来各类电子大赛获奖人员统计为:2005级至2007级无人获奖,2008级1人,2009级4人,2010级8人获奖。

2.社会对该专业毕业生的评价逐步提高。

随着实践教学体系的实施,学生的综合素质逐步提高,毕业生慢慢被用人单位所接受,学院的知名度逐年上升,就业率逐渐提高。用人单位招聘工作由以前的学院主动出面请进来,到现在主动找上门来招聘学生,而且进校招聘的单位逐年增多。另外,学生取得资格证书的人数逐年增加,普遍提高了学生的就业竞争力。考研深造和出国留学的人数也在明显增多,说明了实践教学促进了理论知识的理解和掌握,提升了该专业学生的整体教学水平。

五、结语

通信论文范文8

DSP芯片是专门为实现各种数字信号处理算法而设计的、具有特殊结构的微处理器,其卓越的性能、不断上升的性价比、日渐完善的开发方式使它的应用越来越广泛。将计算机网络技术引入以DSP为核心的嵌入式系统,使其成为数字化、网络化相结合,集通信、计算机和视听功能于一体的电子产品,必须大大提升DSP系统的应用价值和市场前景。将DSP技术与网络技术相结合,必须解决两个关键问题:一是实现DSP与网卡的硬件接口技术,二是基于DSP的网络通信程序设计。DSP与网卡的硬件接口技术参考文献[1]有比较详尽的论述,以下主要讨论基于DSP的网络通信程序设计。

1通信协议的制定

协议是用来管理通信的法规,是网络系统功能实现的基础。由于DSP可以实现对网卡的直接操作,对应于OSI网络模型,网卡包含了物理层和数据链路层的全部内容,因此,规定了数据链路层上数据帧封装格式,就可以为基于DSP的局域网络中任意站点之间的通信提供具体规范。因为以太网是当今最受欢迎的局域网之一,在以太网中,网卡用于实现802.3规程,其典型代表是Novell公司的NE2000和3COM公司的3C503等网卡,所以研究工作中的具体试验平台是以DSP为核心构成的以太局域网,主要用于语音的实时通信,所使用的网卡为Novell公司的NE2000网卡。NE2000网卡的基本组成请见参考文献[2],其核心器件是网络接口控制器(NIC)DP8390。该器件有三部分功能:第一是IEEE802.3MAC(媒体访问控制)子层协议逻辑,实现数据帧的封装和解封,CSMA/CA(带碰撞检测功能的载波侦听多址接入)协议以及CRC校验等功能;第二是寄存器堆,用户对NE2000网卡通信过程的控制主要通过对这些寄存器堆中各种命令寄存器编程实现;第三是对网卡上缓冲RAM的读写控制逻辑。DP8390发送和接收采用标准的IEEE802.3帧格式。IEEE802.3参考了以太网的协议和技术规范,但对数据包的基本结构进行了修改,主要是类型字段变成了长度字段。所以,以DSP为核心的局域网内通信数据包基本格式如图1所示。

DSP读出数据包和打包从目的地址开始。目的地址用来指明一个数据帧在网络中被传送的目的节点地址。NE2000支持3种目的地址:单地址、组地址及广播地址。单地址表示只有1个节点可以接收该帧信息;组地址表示最多可以有64个字节接收同一帧信息;而广播地址则表示它可以被同一网络中的所有节接收。源地址是发送帧节点的物理地址,它只能是单地址。目的地址和源地址指网卡的硬件地址,又称物理地址。

在源地址之后的2个字节表示该帧的数据长度,只表示数据部分的长度,由用户自己填入。数据字段由46~1500字节组成。大于1500字节的数据应分为多个帧来发送;小于46字节时,必须填充至46字节。原因有两个:一是保证从目的地址字段到帧校验字段长度为64字节的最短帧长,以便区分信道中的有效帧和无用信息;二是为了防止一个站发送短帧时,在第一个比特尚未到达总线的最远端时就完成帧发送,因而在可能发生碰撞时检测不到冲突信号。NE2000对接收到的从目的地址字段后小于64字节的帧均认为是“碎片”,并予以删除。在数据字段,根据系统的具体功能要求,用户可以预留出若干个字节以规定相应的协议,以便通信双方依据这些字节中包含的信息实现不同的功能。

2基于DSP的网络通信程序设计

如果基于网络操作系统,用户可以利用一些软件对网络操作系统的支持,很容易地编写出优秀的网络通信程序,但这些程序必须依附于网络操作系统。而在DSP环境下,必须深入了解网络接口控制器(NIC)的工作原理[2],通过对网络直接编程,实现局域网内任意站点之间的通信而完全抛开网络操作系统。

DSP对网卡的通信过程控制就是DSP对DP8390中各种寄存器进行编程控制,完成数据分组的正确发送和接收。DP8390的所有内部寄存器都是8位,映像到4个页面。每个页面有16个可供读写的寄存器地址(RA=00H~0fH)。页面的选择由命令寄存器CA控制。第0页寄存器用于收发过程,第1页寄存器主要用于DP8390的初始化,第2页寄存器则用于环路诊断。DSP对寄存器的操作是将寄存器作为DSP的端口设备,其实际物理端口地址(PPA)为网卡基本I/O端口地址(BIOA)与寄存器地址(RA)之和(即PPA=BIOA+RA)。应注意的是,PPA与寄存器间并不存在一一对应关系,对PPA的读操作与写操作并不一定是对同一寄存器进行的,这种情况在第0页尤其明显。用户数据分组在DSP和网卡交互是通过网卡的数据端口实现的,既可以用DMA方式也可以用PIO方式读入数据分组或将数据分组送至网卡RAM缓冲区。在本系统中,DSP采用DMA方式对网卡进行数据读写。网卡的数据端口地址(NDPA)为网卡基本I/O地址(BIOA)加偏移地址10H(即NDPA=BIOA+10H)。

网卡通信过程控制可分为网卡初始化、接收控制和发送控制。下面分别予以讨论。

2.1网卡初始化

网卡初始化的主要任务是设置所需的寄存器状态,确定发送和接收条件,并对网卡缓冲区RAM进行划分,建立接收和发送缓冲环。具体过程请参阅参考文献[2]。需要说明的是,每一块网卡被赋予一个物理地址,以便通信站点的标识。这个物理地址存在网卡的PROM(存储地址为0000~0005H)六个单元中,在网卡初始化时,通过远程DMA读入DSP内存中,并送入网卡物理地址寄存器。在一步的意义在于:一方面,如果能正确读出网卡的物理地址,则说明网卡硬件基本没有问题,网卡的上电复位和DSP对网卡的初始化顺利通过;另一方面,这个物理地址可以用于DSP网络系统中的点名、包的过滤丢弃等服务,也就是说,在链路层根据数据帧携带的源地址和目的地址确定数据报从哪里来,是否接收或丢弃。网卡初始化时另一个重要的工作就是接收缓冲环的设置,为了有效利用缓冲区,NIC将接收缓冲区RAM构成环形缓冲结构,如图2所示。

接收缓冲区RAM分成多个256字节的缓冲区,N个(N最大为256)这样的缓冲区通过指针控制链接成一条逻辑上的缓冲环。缓冲环的开始页面地址存入PSTART寄存器,环页面结束地址存入PSTOP寄存器。PSTART和PSTOP确定了接收缓冲环的大小和边界。为便于缓冲环读写操作,还需要2个指针:当前页面指针CURR和边界指针BNRY。CURR确定下一包放在何处,起着缓冲环写页面指针作用;BNRY指向未经DSP取走处理最早到达的数据包起始页面,新接收的数据包不可将其覆盖,起着缓冲环读页面指针的作用。也就是说,CURR可以告诉用户网卡接收的数据分组当前放到了什么位置,而BNRY则用于确定DSP读缓冲环到了什么地方。由于接收缓冲区为环形结构,BNRY和CURR相等时,环缓冲区可能满也可能空。为了使NIC能辨别这两种状态,规定当BNRY等于CURR时,才认为环缓冲区满;当缓冲区空时,CURR比BNRY指针值大1。因此,初始化时设置:BNRY=PSTART,CURR=PSTART+1。这时读写指针不一致,为了保证正确的读写操作,引入一软件指针NEXTPK指示下一包起始页面。显然,初始化时NEXTPK=CURR。这时,缓冲环的读指针对NEXTPK,而BNRY只是存储分组缓冲区的起始页面边界指示,其值为NEXTPK-1。

2.2接收控制过程

DSP完成对DP8390的初始化后,网卡就处于接收状态,一旦收到分组,就自动执行本地DMA,将NIC中FIFO数据送入接收缓冲环,然后向主机申请“数据分组接收到”中断请求。DSP如果响应中断,则启动网卡远程DMA读,将网卡缓冲区中的数据分组读入学生机存储区,然后对接收缓冲环CURR、NEXTPK、BNRY指针内容进行修改,以便网卡能从网上正确接收后续分组。DSP响应网卡接收中断后,接收控制过程如下:

①设置远程DMA的起始地址;RSAR0=00H,RSAR1=Nextpk。

②设置远程DMA操作的字节数,这个长度在46~1500字节范围内根据具体要求自己确定。

③0AH送命令寄存器CR,启动远程DMA读。

④从网卡数据端口依序读入数据分组,注意,最先读入的4字节非数据分组内容,第1字节为接收状态,第2字节为下一包页地址指针,3与4字节为接收字节数。第2字节内容应该送入Nextpk,其它字节根据用户要求处理。

⑤修改边界指针BNRY=Nextpk-1。

⑥清除远程DMA字节数寄存器RBCR0和RBCR1。

2.3发送控制过程

DSP先执行远程DMA写操作,将内存中的数据分组传至网卡发送缓冲区,然后启动发送命令进行数据分组发送。发送控制过程如下:

①设置远程DMA的起始地址为网卡发送缓冲区起始地址;

②设置远程DMA操作的字节数;

③12H送命令寄存器CR,启动远程DMA写;

④依序送出数据分组至网卡发送缓冲区;

⑤清除远程DMA字节数寄存器;

⑥设置发送字节数寄存器TBCR0和TBCR1;

⑦12H送命令寄存器CR,启动数据分组发送。

3发送方发送频率的控制

发送方发送频率的正确控制主要保护两点:一是有一个最小发送时间间隔,否则会因为接收方不能及时接收而导致系统瘫痪;二是发送频率能够足具体的功能实现要求。譬如在语音的实时通信中,发送频率就取决于声卡的采样频率。在8kHz采样频率时,声卡每秒钟采样8000字节,采用1024字节需用时128ms,如果通信协议规定发送1次传送1024字节有效数据,则必须每128ms发送一次才能保证缓冲区有新数据待发送,也才能保证接收方有新数据播放。128ms是一个理论计算数值,在实际的操作中采样速度和发送频率之间总是不能完全匹配,而存放数据的缓冲区大小是有限的,如果没有良好的控制技巧来实现正确发送,就会造成声音抖动和延时。解决的办法是双缓冲技术和双指针控制,并且根据采样速度和发送频率之间的匹配情况送入不同的发送通信进行处理后发送。正确发送的含义有两方面,一是每次发送的都是新数据,二是能满足接收方总在播放新数据的需求。

4接收方防止数据包的丢失

由于DSP通过中断请求判断是否有数据分组到来,如果中断繁忙而两个数据包到来时间相差非常短,DSP有可能只响应一次中断,从而导致丢包的发生。分析网卡接收数据过程,当网卡收到数据分组时,首先执行本地DMA,将NIC中FIFO数据送入接收缓冲环,并将本地DMA操作的起始地址存放在当前页寄存器(CURR)和当前本地DMA寄存器(CLDA0、CLDA1)中,DSP从网卡接收缓冲环读出数据到存储器则称远程DMA操作,用软件指针Nextpk来指示远程DMA的起始页面。因此通过比较网卡本地DMA和远程DMA的当前地址,即在中断服务子程序中比较CURR和Nextpk指针,或比较CLDA0、CLDA1和Nextpk指针,就可以保证当前数据分组放到了哪里就读出到哪里,从而防止丢包的发生。

通信论文范文9

[论文摘要]第四代移动通信技术(4G)与前三代移动通信技术相比具有五大技术要求,解决了四大关键技术后4G将一统移动通信的天下。

引言

移动通信技术飞速发展,已经历了3个主要发展阶段。每一代的发展都是技术的突破和观念的创新。第一代起源于20世纪80年代,主要采用模拟和频分多址(FDMA)技术。第二代(2G)起源于90年代初期,主要采用时分多址(TDMA)和码分多址(CDMA)技术。第三代移动通信系统(3G)可以提供更宽的频带,不仅传输话音,还能传输高速数据,从而提供快捷方便的无线应用。但是第三代移动

通信系统仍是基于地面标准不一的区域性通信系统,尽管其传输速率可高达2Mb/s,仍无法满足多媒体通信的要求,因此第四代移动通信系统(4G)的研究势在必行。

一、4G的定义及其技术要求

第四代移动通信技术可称为广带(Broadband)接入和分布网络,具有非对称超过2Mb/s的数据传输能力,对全速移动用户能提供150Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统),集成不同模式的无线通信,移动用户可以自由地从一个标准漫游到另一个标准。其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。其主要技术要求是:

(1)通信速度提高,数据率超过UMTS,上网速率从2Mb/s提高到100Mb/s。

(2)以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。

(3)采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。

(4)发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。

(5)支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务。

二、4G的关键技术

1.OFDM(正交频分复用)

OFDM技术实际上是MCM(Multi-CarrierModulation,多载波调制)的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI)。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。由于OFDM技术由于具备上述特点,是对高速数据传输的一种潜在的解决方案,因此被公认为4G的核心技术之一。

2.软件无线电

软件无线电(SoftwareDefinedRadio,简称SDR),就是采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议部分全部由软件编程来完成。其核心是在尽可能靠近天线的地方使用宽带的“数字/模拟”转换器,尽早地完成信号的数字化,从而使得无线电台的功能尽可能地用软件来定义和实现。软件无线电是一种基于数字信号处理(DSP)芯片以软件为核心的崭新的无线通信体系结构。

3.智能天线

智能天线是波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束,而在自适应阵列中,多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比,天线阵列的优点是除了提供高的天线增益外,还能提供相应倍数的分集增益。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,其基本工作原理是根据信号来波的方向自适应地调整方向图,跟踪强信号,减少或抵消干扰信号。智能天线的核心是智能算法,而算法决定电路实现的复杂程度和瞬时响应速率,因此需要选择较好算法实现波束的智能控制。4.IPv6协议4G通信系统选择了采用基于IP的全分组的方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。

(1)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

(2)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置的方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制获得一个局部连接地址。一旦得到这个地址之后,它使用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。

(3)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4提供相同的QoS,但是IPv6的优点体现在能提供不同的服务。IPv6报头中新增加的字段“流标志”,有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。超级秘书网

(4)移动性。移动IPv6(MIPv6)在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址(homeaddress),这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时,通过一个转交地址(care-ofaddress)来提供移动节点当前的位置信息。移动设备每次改变位置,都要将它的转交地址告诉给家乡地址和它所对应的通信节点。

三、结束语

由于4G与1~3G相比具有通信速度更快,网络频谱更宽,通信更加灵活,智能性能更高,兼容性能更平滑等优点,4G将成为行业关注的焦点。相信不久的将来4G将一统移动通信的天下,产生巨大的社会效益和经济效益。

参考文献: