HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

生物处理技术集锦9篇

时间:2023-11-26 15:34:18

生物处理技术

生物处理技术范文1

关键词:膜生物;反应技术;污水处理

Abstract: With the continuous development of China's economy and society, people's life continuously improved the standard of living, at the same time the survival of the natural environment had more stringent protection requirements, therefore, the membrane bioreactor technology was widespreadly used in sewage disposal. In this paper, the advantages and disadvantages of membrane biological reaction technology were analyzed, and several membrane biological reaction technologies used in environmental engineering wastewater were discussed.

Keywords: membrane bioreactor; reaction technology; wastewater treatment

在进行污水和废水处理中,使用最为广泛的系统就是膜生物反应器,膜生物反应器属于新型的污水处理系统,其可以将膜分离技术和生物反应器进行结合,并通过膜生物反应器中的膜组件有效将废水中的污泥进行清除,从而提高污水处理的质量。因此,膜生物反应器在废水处理站的使用是非常重要的,同时为了避免膜生物反应器出现故障,污水处理相关人员和企业应该对膜生物反应器进行及时的检测和养护工作。

1 膜生物反应器的分类及特点

一般情况下膜生物反应器中的膜组件在运行过程中发挥着不同的作用,因此,根据膜组件的不同作用对膜生物反应器进行分类,大致可以分为:萃取膜生物反应器、分离膜生物反应器等[1],其中在污水处理中使用最多的就是分离膜生物反应器。膜生物反应器的分类方式并不是只有这一种,还可以按照膜生物反应器使用时放置的位置对其进行分类,大致可以分为一体式膜生物反应器和分体式膜生物反应器。另外还可以根据膜生物反应器使用方法和膜生物反应器对氧气的需求量等进行分类。

在污水处理中膜生物反应器具备超强的除污能力,因此其被污水处理体系广泛应用。膜生物反应器对污水处理的基本原理是通过传统的膜分离技术及废水处理技术研究并结合而形成的新型处理技术。这种污水处理系统具备工作稳定、除污能力强、处理量大等特点,在一定程度上提高了污水处理工作的效率和质量。

2 膜生物反应技术在污水处理中常见的运用技术

2.1 内部循环动态生物反应技术

动态膜生物反应器的膜基底采用的是价格低廉的微网材料,对污水处理采用活动污泥的过滤性进行水体污染物的清除。现阶段我国一般使用侧向曝气动态膜生物处理系统。为了避免内循环动态生物反应器出现短流或者流速较小的故障,相关人员可以使用外筒曝气垂直流向的动态膜生物反应器。同时,在日常污水处理时,相关人员应该对部循环动态生物器进行故障检测的维修工作,使其可以正常的运行[2]。

2.2 曝气生物滤池、气浮、膜生物反应器组合技术

曝气生物滤池、气浮、膜生物反应器组合技术采用得到是组合工艺,在污水处理中其可以降低水中胶体、洗涤剂等污染物的含量,从而大幅度降低后续的污水处理难度,并对后续的污水处理工作提供便利,最能体现这一点的就是可以延缓曝气生物滤池、气浮、膜生物反应器的膜污染物[3]。

3 膜生物反应技术在污水处理中运用的优点

3.1 污泥产率低

在污水处理中使用膜生物反应技术,可以使水中存在的污泥在生物反应器内部全部拦截,从而使污水中的排泥实现零排放。

3.2 增强传氧效率

在膜生物反应器中的曝气装置,因为其采用了新型的透气膜,所以这种透气膜的传质阻力较小,同时这种透气膜在高压情况下还能继续工作,并且不受气泡大小和停留时间长等阻碍。这种透气膜不但可以提高污水处理的效率,还可以保证供氧系统正常工作。

3.3 提升生物反应器中硝化细菌的滞留生长

在污水处理中使用膜生物反应技术可以防止硝化细菌的流失[4],并维持反应器中的硝化细菌始终处于高浓度状态,增强硝化速度。

3.4 达到微生物和废水分离的效果

在污水处理中使用膜生物反应技术可以达到微生物和废水分离的效果。因为膜生物反应器的工作原理就是使用膜将微生物和废水进行分离,所以,在使用膜生物反应技术处理污水时,污水从膜生物反应器中流出而微生物却被拦截,从而有效的将二者进行分离。

3.5 分离效率高

在污水处理中使用膜生物反应技术可以有效提高废水和污染物的分离效率。因为膜生物反应器在污水处理过程中不会出现污泥沉降的问题,而且反应器的体积也较小,从而使膜生物反应器在分离污染物时具备较高的分离效率。

4 膜生物反应技术在污水处理中运用的缺点

在污水处理中使用膜生物反应技术并不是没有缺点的。因为膜生物反应技术在污水处理过程中比传统的污水处理工艺会拦截更多的污染物,所以,膜在长时间使用之后,会出现堵塞的情况,导致通水量降低。另外,当膜出现堵塞的情况之后,就需要相关人员对膜生物反应器进行检测和维修工作,而且对膜附着污染物进行清除是一项繁琐复杂的工作,从而增加污水处理相关企单位的人力、物力、时间,导致水处理成本增加。

5 Y束语

综上所述,虽然我国对膜生物反应器的研究还处于初级阶段,但是随着我国科技技术的不断发展,膜生物反应器在污水处理中一定会发挥更大的作用,从而提高我国处理污水的质量和膜生物反应器处理污水的能力。

参考文献

[1]关万里,韩文萍,刘小惠,等.膜生物反应技术在环境工程污水处理中的应用分析[J].低碳世界,2016(28):11-12.

[2]杨炎锋.膜生物反应技术在环境工程污水处理中的应用[J].建筑・建材・装饰,2016(13):236-237.

生物处理技术范文2

【关键词】污水处理厂;生物除臭;技术应用

前言

如今,随着社会经济的高速发展以及人民生活水平的提高,每日均有大量生活污水、工业废水或其它废水产生,而为了提高污水处理效率,污水处理厂在数目上同样呈逐年上升趋势。由于污水处理厂在净水过程中将排出的大量臭气,这些臭气不仅会对环境空气质量造成严重影响,危害生态环境,而且还会对附近居民的身体健康造成损害。随着维权意识与环保意识的增强,如何有效处理污水臭气成了人们日益关注的焦点。

1、除臭技术特征释意

以处理方法来划分,可将处理恶臭气体的方式分为生物法、化学法以及物理法等三种类型,例如生物处理、化学氧化、催化燃烧、吸附、焚烧等等。一般而言,要使用何种处理方法,需要根据场所实际情况、实施的可行性、设备空间及运行需耗资金等因素来进行考虑,从中择选出最适宜当时条件的处理方法。下面对几种常见除臭法的特征进行阐述:(1)吸附剂吸附法。该法属于物理方式,其最大特征是比表面积大,且对活性炭需求量也大,除臭过程中需对活性碳进行大量消耗,除臭效果不理想[1]。(2)热力学法。该法又被称为燃烧法,优点是经济方便,操作简单,然而由于作为实施场地的燃烧车间往往会出现新的污染源,因而该法较适于处理单一气体,对于污水处理厂内的混合型气体则处理效果不明显。(3)化学吸收法。该法相对热力学法而言成本较高,且同样不适于处理混合型气体,此外就目前而言,化学吸收法技术尚未成熟,在臭味处理上仍需要进一步发展和优化。(4)高能离子净化系统,该种技术可吸收空气中存在的硫化物和颗粒物等可对人体造成危害的物质,并能有效消除空气中飘浮的细菌,在国外被广泛应用于公众大厅、医院、办公室等公共场所,然而该技术虽然在细菌分解方面具有较好效果,在除臭效果方面却不甚理想。(5)植物吸收隔离法。该法不仅简单经济,且同时具有绿化和保护环境的作用,然而该法易受气候影响,一旦气温降低,除臭效果即大打折扣。(6)生物吸收法。该法具有投资少、维护管理方便易行、运行费用低廉、效果显著等特征,常见的生物吸收法有生物过滤技术、生物择选培养技术、生物滴滤技术及生物洗涤技术等四种。

2、污染水处理厂生物除臭技术

2.1生物洗涤技术

生物洗涤技术中存在两种处理方式,一种为通入生物洗涤塔,另一种则是通入爆气池法。

通入生物洗涤塔是由两个部分所构成,即吸收与生物降解。洗涤塔存在的主要作用是为恶臭气体与循环液的接触提供充分机会,使循环液能尽可能接触臭气并将其转入液相。具体过程:当恶臭气体流过塔内并缓缓上升时,富含微生物的循环液将从塔顶喷入,与气体进行直接接触,而在接触过程中,气体中的臭气将被循环液吸收并转入液相,而后流入生物反应池中,被生存于池内的微生物氧化分解[2]。

通入爆气池法是将各处理组收集的恶臭气体导入爆气池中,利用池内富含微生物的活性污泥混合液将臭气吸收分解的过程。通入爆气法具有运行费用低廉,操作方法简单易行等特点。然而在实际使用中,由于爆气池存在过爆气的可能性,往往会对池中的污水微生物造成一定影响,致使部分恶臭气体没能被完全吸收和分解,除臭效果不甚理想。

2.2生物过滤技术

生物过滤技术的除臭流程主要运用天然滤料来实现,通过存在于滤料中的微生物以及细菌来对气流中的臭气完成氧化降解工作,从而达到净化气流的目的。在一般情况下,气流中的臭气仅需依靠滤料自身拥有的微生物及细菌即可消除,不必额外添加化学药物或是进行细菌接种来增强除臭效果。因此,滤料材料品质在除臭中发挥着至关重要的作用,其品质直接影响除臭效果,为此,应重视滤料材料的选择工作。在择选滤料材料时,首先应考虑的是其是否适宜作为微生物及细菌的生长场所,常见滤料材料有土壤、沙石、木削、垃圾堆肥产物及贝壳等。随着近年来人工合成材料的发展,使得该类材料在表面积、均一性及强度等方面相较于大部分天然材料具有显著优势。

2.3生物择选培养技术

生物选择培养技术中,无论是生物吸收法,亦或是化学吸收法,由于两种吸收法都需要在污水处理厂中设置臭气吸收系统,因而往往会带来其它问题,例如系统中的管线及设备等极易受到硫化氢等腐蚀性气体的腐蚀,降低耐用性和稳定性,而系统的建设也会使成本增加,消耗不少资金,此外,若管理实施不当,一旦臭气中的可燃性气体积累到一定程度将可引发火灾甚至爆炸事件,不仅会为污水处理厂带来巨大的财产损失,还会严重威胁他人生命安全[3]。随着生物除臭技术的发展,一种新的生物择选培养技术应运而生。该技术名为HBR生物除臭技术,其工艺原理是模仿自然土壤的生物环境特征,同时嫁入HBR技术,设置生物择选培养池,并在其中置入装填有复合型活性催化土填料的微生物培养皿,从而为土壤菌提供良好的生存繁殖环境。在培养池内,一般微生物的繁殖生长活动受到制约,而部分具有特定代谢功能的微生物则获得活化并大量繁殖。当这些具有特定功能的微生物流入污水处理厂,通过水管道回流至生物池入口后,存在于污水中的恶臭物质将在此过程中被微生物吸附降解,从而实现控制污水臭气泄漏,优化除污性能的效果。

2.4生物滴滤技术

生物滴滤技术既不属于生物洗涤法,也不是生物过滤法,而是一种介于两者之间的生物除臭技术。生物滴滤技术中的滴滤塔同时具有液相再生与吸收废弃两种功能,塔内设置了诸多可为特殊微生物提供良好生长繁殖条件的填料,为臭所的降解与吸收营造良好环境[4]。当生物滴滤技术开始运作时,气体将由塔底流入其内,而在流动过程中,存在于塔内的接种挂膜生物滤料将会不断净化流过的气体,直到气流完全净化干净并从塔顶排出。相对于其它生物过滤法,生物滴滤技术的湿度及PH值等反应条件更易于控制,同时,比起一般的生物过滤法,生物滴滤技术特有的生物滴滤塔能够将含氮、硫等微生物在降解过程中形成酸性代谢污染物滤除干净。

3、结语

综合上述,生物除臭技术作为一种从源头遏止恶臭的处理方法,可在恶臭气体排出前将其降解消除,为污水处理厂解决臭气问题提供了一条创新有效的途径。通过参考国外经验并结合污水处理厂的实际情形,设计出适宜当地的生物污水除臭工艺,可充分提高污水处理厂除臭效率,实现环境及空气卫生质量的改善。

参考文献

[1]刘晓兰,康磊,卢义程.生物滤池加离子换风除臭技术在污水处理厂的应用[J].中国市政工程,2013(03):45-47.

[2]邱芳.基于PLC的DCS控制系统在污水处理厂中的应用[J].科技致富向导,2013(11):181.

生物处理技术范文3

关键词:钻井废弃泥浆 生物处理 微生物

改革开放以来我国经济高速增长,对石油的依赖和需求也逐年上升,勘探开发的石油井数量也逐年增加,随之产生大量的钻井废弃液带来的污染问题越来越受到世界各国的重视.如不加以处理就直接排放,必然会对自然生态环境造成一定的破坏。

一、钻井废弃泥浆的污染物组成及危害

废弃钻井泥浆成分复杂大多呈碱性,pH值在8-12之间,甚至达到13以上,且色度大,外观呈粘稠流体或半流体状,具有颗粒细小,含水率高,不易脱水,粘度大等特点,由于钻井泥浆中含有多种有机和无机类化学处理剂,个别污染指标甚至超出国家允许排放浓度的数百倍,其中的主要污染物有:(1)悬浮物(2)酸碱物(3)有机质及其分解产物(4)油类(5)重金属(6)盐类(7)其他化学添加剂。

由于废弃钻井液成份比较复杂,钻井废弃泥浆对环境的影响也是多方面的,表现为:(1)污染地表水和地下水资源(2)各种重金属滞留于土壤影响植物的生长和微生物的繁殖(3)过高的pH、高浓度的可溶性盐及石油类造成土壤板结,危害动植物的生长(4)废物中的有机处理剂使水体的COD、BOD增高,影响水生生物的正常生长。

二、钻进废弃泥浆的主要处理方法

目前国内外对钻井废液的处理方法主要有固化、注入地层、处理后直接排放、回注、焚烧、填埋等化学和物理方法。化学固化法被固化后的有害物质不再向环境扩散和迁移,但固化处理需一定的成本,一次性处理量大;回注法是废弃泥浆经化学絮凝等方法处理后应用于配制泥浆或将其注入井中,但是优良的絮凝剂较少;焚烧法处理成本高,而且会给空气造成二次污染;填埋法易对地表及地层水产生污染。这些方法虽然在一定程度上对钻井废泥浆进行了处理,但是钻井废泥浆中的有机污染物并未分解,依然对环境可能造成污染。

三、钻进废弃泥浆的生物处理方法概述

广义的生物处理技术指一切以利用生物为主体的环境污染治理技术,包括利用动物、植物和微生物吸收,降解,转化土壤或水体中的污染物,使污染物的浓度降低到可以接受的水平,或将有毒有害污染物转化为无害的物质,也包括将污染物稳定化,以减少其向周边环境扩散。目前钻井废弃泥浆的生物处理技术已成为国内外石油天然气勘探开发作业技术中的研究热点,根据生物处理技术所利用的生物种类,可分为动物处理、植物处理、微生物处理以及微生物——植物联合处理技术。目前,以微生物处理技术研究和利用的最为广泛,并取得了可喜的研究成果。

四、微生物法处理钻进废弃泥浆的研究进展

微生物处理技术是在人为优化的条件下,利用自然环境中生息的微生物或人为投加的特效微生物的生命代谢活动来分解污染物,微生物对物质进行各种转化作用的生理学基础是其新陈代谢活动,即分解代谢和合成代谢,可用于生物处理的微生物有很多,包括细菌,真菌等。

1.微生物法处理钻井废弃泥浆的影响因素

人们对微生物处理废弃钻井泥浆的研究较多。主要是从废弃钻井泥浆中筛选出高效降解微生物,然后将其投加到废弃钻井泥浆中,调整微生物作用环境,如温度,营养元素,pH值,盐度等。部分地区受环境因素的影响,生物降解速率慢,通过提高温度,施加营养元素,接种专性细菌等方法促进生物降解。

2.微生物法的室内研究

崔靖园等利用从平湖油田钻井废弃液中分离的一株菌株对废弃液进行处理,使COD和TOC的降解率达到50%以上;樊琳从石油污染土壤中分离出一株假丝酵母菌株Y2,通过正交实验确定最佳培养温度、pH值、营养因子构成,使废弃泥浆中的石油烃降解率达到91%;廖玲通过色度和CODcr去除率的高低从四川井场中筛选出六株高效降解菌种,并对其中五个菌株做了16srDNA分析,构建了系统发育图。

3.微生物法的现场应用

通过向废弃泥浆池投入菌剂以及必要的营养物质,达到使废弃物降解和富集的过程。陕西省科学院酶工程研究所生产的复合菌剂在长庆油田应用,陈立等利用目标泥浆池筛选优化的复合菌剂,处理陕北地区58个油气田的废弃泥浆,经30-60天的微生物处理,治理效果完全达到国家标准。高磊等从废弃泥浆池中筛选出四个优势菌种,利用正交试验确定菌种最佳配比及培养最佳条件,在目标泥浆池投入菌剂,经四十天处理后,废弃泥浆完全固化,残余烃含量明显降低,龟裂度较高,pH值由碱性恢复中性。

五、展望

目前低污染低成本的微生物处理技术处理效果好,生化处理后污染物残留量低,对环境影响小,对人体无害。但是目前的微生物处理技术还不完善,还需要开展进一步研究。

1.如今多数降解菌是从污染物中直接分离出的,广谱性不强,具有降解多种污染物的基因工程菌的研究还比较少。

2.研究微生物,动物植物联合降解废弃物,充分发挥各自的优势,并相互协同,从而达到高效降解有害物的目的。

3.微生物处理废弃物的时间较长,如何提高菌种的降解速率是一个亟待解决的问题。

4.建立已有降解菌的数据库,研究每一分支的降解机理,建立废弃泥浆组成的数据库,研发二者相关联的应用软件,以便为目的废弃泥浆快速选择相应的降解菌。

参考文献

[1]崔靖园,李辉,牟伯中.生物法处理钻井废液的研究.[J]石油炼制与化工,2011.41(12):56-60.

[2]黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理[M].北京:石油工业出版社,1984.

[3]丁克强等.石油污染土壤的生物降解研究[J].生态学杂志,2001,20(4):16-18.

[4]陈立.陕北地区油气田钻井混合废弃物的微生物原位修复技术研究[学位论文].西安:西北大学,2009.

[5]廖玲.钻井废弃泥浆降解菌的分离及特性研究:[学位论文].成都:四川农业大学,2010.

[6]徐同台,王奎才,门廉魁.我国石油钻井泥浆发展状况与趋势[J].油田化学,1995;12(1):74-83.

生物处理技术范文4

关键词:含油污水处理;微生物;环保

中图分类号:U664.9+2 文献标识码:A 文章编号:

油田注水已由原来的笼统注水发展到分层、分质注水,并且层位逐渐增加,对油田含油污水的水质要求更高,要求有更好、更干净的水回注地下,特别是对低渗透油层—薄差层、过渡层,对污水水质要求更高,使“干净”的污水注入到这些层位补充能量驱油,从而提高油田的采收率。随着油田综合含水率的升高,污水处理量逐渐增大,已形成了庞大的污水处理系统,同时随着油田含油污水含聚浓度的增大,稳定注入水质指标难度进一步增大。近年来为满足油田生产的需要,对污水处理系统进行了大规模的改建和扩建,增加了深度处理系统,各种提高水质的水处理药剂不断提高投加量,以此来满足低渗透油层的需求,但是污水水质全面达标还是非常困难,在综合考虑不能无限制增加处理规模、改建污水处理设施和加大投加药剂的基础上,建立了第一座以微生物强化处理为主体的聚合物污水处理站—某联污水处理站,更好的解决油田含油污水站出水水质问题。自从2011年10月投产以来,该站外输水质的含油和杂质指标均始终保持在5mg/L以下,为油田污水的达标处理提供了新的思路。

1 微生物污水处理技术原理

、图1 微生物降解原理示意图

因含油污水中成分复杂,含难处理、难生化降解的有机污染污较多,可生化性差,杂菌较多且竞争性较强,因此一般微生物通过竞争难以形成优势菌群,而且在高含盐量、高粘度的含聚污水中难以生长繁殖,因而一般生化处理难以实现工业化应用。油田设计院通过筛选及有效配伍获得特种微生物联合菌群,在有氧的条件及适宜的环境中,细菌将含聚污水中的溶解性有机物通过自身的生命过程—氧化、还原、合成等把复杂的有机物降解成简单的无机物(H2O和CO2等),放出的能量一部分作为自身生存与繁殖的生命之源。在适宜的条件(20℃--40℃)下微生物便以有机物为营养,实现生命的新陈代谢,达到净化污水的目的,确保优质的出水水质。经微生物处理后的污泥已达到了环保要求,减少了后续污泥处理系统的投资费用及运行管理等费用。降低了运行成本,劳动强度小,抗冲击性能强,污泥量小,是一种无害化处理的方法。

2 微生物污水处理技术工艺流程及主要参数

2.1微生物污水处理技术主要工艺流程

某联污水处理站设计规模为50000m3/d,目前完工的一期工程为25000m3/d,工艺流程图见图2。该工艺流程采用的是“来水气浮装置微生物反应池固液分离装置滤罐回注”的处理工艺。放水站来水首先经过高效气浮装置去除90%的污油,出水进入微生物反应池,微生物处理系统中投加特种微生物,对污水中的油及其有机物污染物进行最大限度的生物降解,出水经过固液分离装置分离水中固体悬浮物,其中分离的污泥通过污泥处理系统处理后的低污染污泥装车外运,污水进入石英砂过滤罐进行一级过滤后,出水达到深度污水外输水质要求后外输回注。

图2 微生物处理工艺流程

2.2高效气浮装置原理及技术参数

高效气浮装置在—定的压力条件下,利用高压溶气释放的微气泡,与污水中的油及悬浮物等不断碰撞,使其粘附在微气泡上,随气泡一起上浮到水面,形成浮油,利用刮油机刮至污油槽回收利用;污水进入泥水分离区,比重大的污泥沉入底部由刮泥机刮出,分离后的污水进入微生物反应池。

图3 高效气浮装置工艺流程

规格型号:BGF-480;最大处理水量:450m3/h ;数量:3台;水力停留时间:3~5min;回流比:15-25%;进水含 油:≤1000mg/l;出水含油:≤100mg/L;进水悬浮物:≤300mg/l;出水悬浮物:≤200mg/L。

2.3微生物反应池技术参数

型号规格:BYCS-2500-J;数量:5组(每组3级,并联运行);溶解氧:≥2mg/L;生物填料填充度≥80%;总停留时间:8小时;进水含油≤100mg/L;出水含油≤5mg/L。

3运行情况及效果

某联污水处理站自2009年8月开始建造,2011年10月28日投产,运行至今已经8个月,目前来水较少,日处理量约11000 m3/d,未达到一期设计量二分之一,且来水含油远低于设计标准,外输水质一直稳定,运行水质保持低于“5、5、2”标准。分析表明,来水含油最高72mg/l,最低19.5mg/l,平均31.9mg/l,悬浮物最高103mg/l,最低76mg/l,平均92.1mg/l,经过气浮及微生物处理之后含油最高20mg/l,最低9.8mg/l,平均12.5mg/l,悬浮物最高25mg/l,最低6mg/l,平均15.3mg/l,已经达到了普通污水的“20、20”的标准,再经过一级石英砂过滤处理之后,外输水质最高2.5mg/l,最低1mg/l,平均2.1mg/l,悬浮物最高3mg/l,最低1mg/l,平均2.1mg/l,远远低于深度污水外输标准的“5、5”,并且外输水质持续稳定在“3、3”以下,说明除油效果良好,具有在油田生产推广的价值。

4结论

(1)采用微生物技术处理油田污水可确保达到 “5.5.2”水质指标要求乃至更低,有利于油田开发。

(2)利用微生物处理含油污水,菌群成本低,而且运行成本低于原工艺。

(3)经微生物处理后,污水中的有毒有害物质得到彻底降解,其最终产物为H2O和CO2等无机物,可减少由于加药处理使采出水进一步复杂化的现象。微生物处理后产生的污泥具有环保,减少外排污染的特性。

生物处理技术范文5

关键词:废水;厌氧生物处理;技术

中图分类号:X703 文献标识码:A

厌氧生物处理又称厌氧发酵或厌氧消化。20世纪70年代后,由于新的处理工艺和设备不断出现,废水处理效率成倍提高,厌氧生化技术逐渐在高浓度有机废水处理方面显示出优越性,目前它已成为环境工程与能源工程中不可或缺的重要技术。

1 厌氧生物处理的基本原理

厌氧生物处理是一个相当复杂的生物化学过程。整个厌氧过程主要由水解产酸菌、产氢产乙酸菌和产甲烷菌3大类群共同作用完成。厌氧消化过程可大致分为3个连续的阶段:水解酸化阶段、产氢产乙酸阶段和产甲烷阶段(碱性发酵阶段)。

水解酸化阶段,复杂的大分子、不溶性有机物在微生物胞外酶作用下水解成简单的小分子的溶解性有机物。随后,这些小分子有机物渗透到细胞内被进一步分解为挥发性的有机酸(如乙酸、丙酸、丁酸)、醇和醛类等;产氢产乙酸阶段,由水解酸化阶段产生的乙醇和各种有机酸等被产氢产乙酸细菌分解转化成乙酸、H2和CO2等;产甲烷阶段,乙酸、乙酸盐、H2和CO2等被产甲烷细菌转化为甲烷。

实际上,在厌氧反应器的运行过程中,厌氧消化的3个阶段同时进行并保持一定程度的动态平衡。

2 厌氧生物处理过程的影响因素

根据生理特性的不同,可粗略地将厌氧生物处理过程发挥作用的微生物类群分为产酸细菌和产甲烷细菌。厌氧过程的成败和消化效率的高低主要取决于产甲烷细菌。因此,在考察厌氧生物处理过程的影响因素时,大多以产甲烷细菌的生理、生态特征为着眼点。

影响厌氧处理效率的基本因素有温度、酸碱度、氧化还原电位、有机负荷、厌氧活性污泥浓度及性状、营养物质及微量元素、有毒物质和泥水混合接触状况等。

2.1 温度

温度对微生物的生命活动过程有重要影响。产甲烷细菌生存的温度大致在5~60℃范围,根据温度范围不同,产甲烷菌可分3大类群:低温菌群(20~25℃)、中温菌群(30~45℃)和高温菌群(45~75℃)。因此,厌氧处理工艺根据产甲烷菌各类群最适温度条件的不同,通常分为低温发酵、中温发酵和高温发酵3种。低温发酵的适宜温度范围为10~30℃,中温发酵的适宜温度为35~38℃,高温发酵的适宜温度为50~55℃。温度高低决定发酵过程的快慢。在具体选择厌氧消化温度时,应同时兼顾处理效率和能源消耗两个因素。低温发酵效率太低,高温发酵能耗较大,且操作管理复杂,故一般采用中温发酵进行污泥消化。

2.2 酸碱度

产酸细菌和产甲烷细菌适应的pH值范围是不同的,与产甲烷细菌相比,产酸细菌对pH的变化不太敏感,其适宜的pH值范围在4.5~8.0之间。有的甚至可在pH值为5.0以下的环境中生长繁殖。而产甲烷细菌适应的pH值范围较窄,中温产甲烷细菌的最适pH值为6.8~7.2。在此pH值范围之外,厌氧消化的产气过程会受到严重抑制。

2.3 有机负荷率

负荷率用来反映生物处理系统中食料与微生物量之间的平衡关系。它有3种表示方法:有机负荷率、污泥负荷率和投配率。其中,污泥负荷率最为直观和确切,但要准确计量某些反应器中的污泥量比较困难。而在操作运行时,有机负荷使用起来简单并且能直观地比较不同消化装置的能力,故工程上常用有机负荷这一参数。

2.4 厌氧活性污泥

厌氧活性污泥是厌氧消化过程的工作主体,主要由厌氧微生物及其代谢和吸附的有机、无机物所组成。厌氧活性污泥的浓度和性状直接影响厌氧消化反应器的转化效率和处理能力。在一定范围内,活性污泥浓度越大,厌氧消化效率越高,当浓度达到一定程度后,消化效率不再显著提高。这与污泥积累时间过长,其中的无机成分比例增大,污泥活性降低有关;也与过高的污泥浓度造成装置的堵塞有关。

2.5 营养物质与微量元素

微生物在生长繁殖过程中是按照一定的比例摄取碳、氮、磷以及其他微量元素的。在工程上,主要控制进料的碳、氮、磷比。通常,处理含天然有机物的废水时无需调节营养物比例,而在处理化工废水时,要特别注意对进料中的碳、氮、磷比例进行调节。

2.6 有毒物质

在消化系统中,不可避免地存在一些抑制厌氧过程的有毒物质,包括有毒有机物、重金属离子和一些阴离子,主要来源于进水或厌氧菌的代谢产物。

2.7 混合和搅拌

搅拌可缩短消化反应时间,并在一定程度上提高产气量。通过搅拌可消除反应器内活性污泥和各种物质的浓度梯度,增加食料与微生物之间的接触,避免出现分层现象。

3 厌氧生物反应器

近年来,结合高浓度有机废水的处理,人们相继开发了一些新型厌氧生物处理工艺和反应器。厌氧处理工艺有多种分类方法。按照微生物在反应器内生长状态不同,可将厌氧生物反应器分为悬浮生长式和附着生长式两种。按厌氧消化的产酸阶段和产甲烷阶段是否在同一反应器中并在同一工艺条件下完成,可将厌氧反应器分为单相厌氧反应器和两相厌氧反应器。厌氧活性污泥法工艺包括传统消化池、厌氧接触法、升流式厌氧污泥床等。厌氧生物膜法工艺包括厌氧生物滤池、厌氧流化床、厌氧生物转盘等。

4 厌氧生物反应器的运行与管理

4.1 启动

微生物增殖缓慢、设备启动时间长是厌氧处理法的主要缺点之一。因此,在启动期应投加足量的接种污泥。通常,使接种污泥量保持在反应器容积的30%左右即可缩短启动时间。最好选择同样物料的厌氧消化污泥作为种源,否则所需时间更长。

在启动过程中,要控制升温速度为1℃/h,达到目标温度后要维持恒温。要将pH控制在6.8~7.8范围。并要合理控制有机负荷。在启动初期,宜采取较低的有机负荷,而后再逐步增加负荷。除厌氧污泥床外,其他厌氧反应器对初始负荷和负荷递增过程的要求相对较低,故启动时间也相对较短。此外,若废水本身的缓冲性能较好,也可考虑在较高的负荷下启动。

4.2 运行监测

在消化池正常运行时,要通过对进出水pH值、池内碱度、COD、BOD5、悬浮物、总氮、总磷、产气量、气体成分、氧化还原电位、有机物去除率以及温度等指标进行日常监测,从而对厌氧消化系统进行科学调控,达到相应的处理效率。通常,厌氧消化过程易出现酸化现象。除了酸化现象外,还可能出现上清液水质恶化的现象。原因可能是排泥量不足、固体负荷过大、消化不完全、混入浮渣、上清液与消化污泥分离不佳以及搅拌过度等。要针对具体情况,寻求相应的解决方法以改善上清液水质。

在运行时,气泡异常也是常会发生的现象。如连续地喷出气泡、不起泡、产气量正常但有大量气泡剧烈喷出等。当出现连续喷出气泡现象时,应采取降低有机负荷或者加强搅拌等措施。当出现不起泡现象时,可暂时减少或终止进水,充分搅拌并消除浮渣。当产气量正常但有大量气泡剧烈喷出时,应改善浮渣破碎设备的运行状况并加强搅拌。

4.3 安全要求

厌氧生物处理设备在运行中,应充分注意安全问题。当空气中甲烷含量为5%~15%时,遇明火即发生爆炸。因此消化池、贮气罐、沼气管道及其附属设备等沼气系统的各个环节,必须绝对密封,不允许漏气。要经常进行检查,一旦漏气,要立即修理。沼气生产区、沼气发电室内要严禁明火和电气火花,禁止放置易燃易爆物品,并要配备足够的消防设备。沼气中含有微量有毒的硫化氢和令人窒息的二氧化碳,应防止它们在低凹处积累。因此,出于安全考虑,在出料或检修时,要先以新鲜空气彻底置换出池内的消化气,然后再进入消化池。

参考文献

[1] 王磊.膜生物反应器(MBR)处理味精废水效果研究[D].天津:天津工业大学,2006.

[2] 刘继凤,刘继永,朱进勇.浅谈工业废水中难降解有机污染物处理技术及发展方向[J].环境科学与管理,2008(04).

生物处理技术范文6

关键词 曝气生物滤池;生活污水;处理技术;应用

中图分类号:X703 文献标识码:A 文章编号:1671-7597(2014)09-0106-02

1 曝气生物滤池的工艺原理与特点

1)曝气生物滤池的工艺原理。曝气生物滤池从上世纪开始出现在我国污水处理研究领域,在不断地研究创新中开发出了几种适合我国污水处理的形式。曝气生物滤池是生物接触氧化法和给水过滤设计原理的结合,它有效地综合这两种原理曝气、高滤速、截流悬浮物、定期反冲洗等特点。其工艺原理主要是:将粒径较小的颗粒状滤料填装在滤池反应器中,利用滤料上生物膜微生物的氧化作用、吸附截流作用、分级捕食作用以及反硝化等作用,使处理的污水得到净化处理。

2)曝气生物滤池的特点。曝气生物滤池采用粒径较小的颗粒状填料作为微生物载体,在污水处理的过程中由于污泥负荷低,过滤出来的水不仅水质较好而且水质稳定。其特点主要有:①曝气生物滤池占地面积小;②工艺简单,成本投入少;③填料容易被微生物吸附,生物膜具有较高的活性;④曝气生物滤池在运行的过程中空气从上至下对填料进行供氧,氧气利用率高,节省大量动力。

2 曝气生物滤池在生活污水处理中的技术应用

2.1 曝气生物滤池工艺的基本类型及流程

1)曝气生物滤池工艺的基本类型。曝气生物滤池的功能主要有碳化、硝化、反硝化、除磷等,与其他污水处理工艺相比,它可以对城市生活污水或工业污水进行二级或三级处理。其工艺流程与水质有直接的关系,根据水质的不同可以分为三种形式:①脱碳曝气生活滤池;②硝化曝气生物滤池;③反硝化曝气生物。

2)曝气生物滤池的工艺流程。

曝气生物滤池的工艺流程如图1所示。

图1 曝气生物滤池工艺流程

曝气生物滤池工艺流程说明:

污水中的漂浮物主要通过格栅和沉砂池的作用来去除,沉砂池材料的选择有很高的要求,曝气生物滤池技术要求采用旋流式结构沉砂池,不仅可以控制进水中的溶解氧,还可以加快厌氧反应。其次,机械搅拌池中除磷剂的添加要以水质情况为依据,依据实际情况在水解池内安装斜板和泥斗。不仅可以完成初沉池的任务,还可以有效地促进进出水产生的水解反应。水解的过程可以把污水中含有的大分子物质细化,把一些通过生物降解法难以分解的物质转化为生物容易分解的物质。水解的过程不仅可以提高污水的净化度,还可以为生物滤池之后的降解过程做铺垫。另外,水解池力的污水经过降解后一次进入反硝化生物滤池、曝气生物滤池。曝气生物滤池可以将污水中的分解物进行有效分解后,出水受作用的影响会反流会到反硝化生物滤池。硝态氮在反硝化滤池中会转化为氮气排出,转化必须依托电子供体和电子受体的共同作用,转化过程中电子供体一般以进水中含有的有机物为主,硝态氮是电子受体的最佳选择。

2.2 曝气生物滤池主要构筑物

1)调节池。生活污水排放受时间的影响,不同时段的排水含污量不同,而且水的波动性比较大。调节池就是为了调节污水含量以及控制污水波动性而设定的。调节池安设在地下,设计停留时间为四小时,容纳面积为400立方米,调节池内设有穿孔管,主要作用是对污水进行搅拌,避免污水中的悬浮物沉到水底。

2)水解酸化池。水解酸化池的主要功能是将不具有溶解性的物质降解为可溶性有机物,将难以化解的大分子物质降解为小分子物质,设置停留时间为四个半小时,最大容水量为450立方米。

3)曝气生物滤池。曝气生物滤池的主要特点是池内的气体和水都是上向流态,使用以球形、体质轻的陶粒为主的新型填料,待填料表面和内部生长出微生物膜,污水从下向上经过滤料层,微生物膜在滤料层的下方为曝气提供所需的氧气,保证废水中的难解物质得到有效地降解。在规定的时间内对处理后的污水进行反冲洗,通过冲洗排除滤料表面产生的老化微生物膜,从而保障降解过程中微生物的活性。

2.3 曝气生物滤池监控系统

1)曝气生物滤池运行监控系统。预处理PLC站、水解池PLC站、滤池PLC站三大监控系统共同组成曝气生物滤池的监控系统,西门子S7-300PLC监控系统和S7-400PLC监控系统是这三大系统进行监控的主要依据。上位监控机在中控室中起到的作用很大,上位监控机的设置需要充分了解中控室里的具体情况,一般设置两台上位监控机辅助监控系统运行。预处理PLC站的主要功能是控制泵房不同规格的格栅,格栅主要分为粗、中、细三种,必须经过严格的控制才能辅助工作。水解池PLC站的主要功能是负责水解池和配电系统的监控。

2)曝气生物滤池的曝气监控系统。曝气生物滤池的曝气需要经过严格的控制,曝气滤池必须由变频的罗茨鼓风机进行定时曝气,罗茨鼓风机可以由系统远程操纵,完成溶解氧闭路循环自动控制的主要依据是滤池上方溶解氧的测定值,测定值必须精准,否则,对溶解氧闭路循环的全自动控制会产生较大的影响。

2.4 处理效果

曝气生物滤池在我国污水处理中取得了良好的效果,其过滤的水质较好,系统运行稳定,各阶段产生的污水含污量较高,通过曝气生物滤池技术,水质经过降解、过滤明显提高;曝气生物滤池对SS要求比较高,进水SS的浓度对水质的降解有很大的影响;曝气生物滤池施工技术复杂,管理人员的技术要求必须符合要求。

3 结束语

曝气生物滤池在生活污水处理中的技术应用可以看出:水解酸化池、曝气生物滤池和反硝化生物滤池联合运用处理生活污水取得了明显的效果。为了提高生活质量、环节城市用水紧张等问题,人们应该顺应时展的需求牢牢掌握曝气生物滤池施工技术,保障水资源循环利用的同时促进我国经济的发展。

参考文献

[1]蔡升云.曝气生物滤池在生活污水处理中的试验研究[D].安徽理工大学,2009.

生物处理技术范文7

>> 污泥深度脱水技术在江心洲污水处理厂的应用 深度脱水技术在市政污泥处理中的应用研究 市政污泥深度脱水处理工程实例 壳聚糖及其复合絮凝剂在污泥深度脱水处理中的效用 污水处理厂污泥脱水机房深度脱水改造设计 污泥高效脱水技术在国内污泥处理中的应用 污泥深度机械脱水技术的研究与分析 污泥压榨深度脱水系统的应用 船舶压载水处理技术及其产业化应用成果 水处理技术中的污泥资源化探究 生活污水处理厂污泥改性脱水干化实验研究 城市污水厂污泥处理深度脱水工艺的研究 污泥热干化技术在城市污水处理厂的应用研究 浅谈污泥调理加板框压滤深度脱水技术 化学调质应用于污泥深度脱水除臭 预氧化低污泥水处理技术在文一污的研究与应用 试探固定化微生物技术在废水处理中的应用 固定化微生物技术及其在废水处理中的应用 固定化微生物技术在印染废水处理中的应用 污水处理生物技术的应用 常见问题解答 当前所在位置:l,2016-04-26/2016-09-13.

[3] 国务院.国务院关于印发水污染防治行动计划的通知(国发z2015{17号)[EB/OL]. http:///zhengce/content/2015-04/16/content_9613.htm,2015-04-02/2016-09-13.

[4] 宋兴伟,周立祥.生物沥浸处理对城市污泥脱水性能的影响研究[J].环境科学学报,2008,28(10):2012-2017.

[5] 王电站,周立祥,何锋.生物淋滤法提高制革污泥脱水性能的研究[J].中国环境科学,2006,26(1),67-71.

[6] 周立祥.实现污泥深度脱水和重金属去除的生物沥浸处理技术[J].中国环保产业,2012(9):17-20.

[7] 薛静,张卫华.生物沥浸干化技术解污泥处置难题[J].环境经济,2011(12):59-60.

[8] 薛静,张卫华.市政及工业污泥生物沥浸干化技术[J].建设科技,2011(19):64-67.

[9] 胡伟桐,李矗羊鹏程,等.生物沥浸污泥饼高温堆肥系统的工艺设计及运行[J].给水排水,2014,40(7):16-20.

[10] 周立祥,方迪,周顺桂,等.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学,2004,25(1):62-66.

[11] 周顺桂,周立祥,王世梅.嗜酸性硫氧化菌株SS-3的分离及其在污泥脱毒中的应用效果[J].环境科学研究,2003,16(5):41-44.

生物处理技术范文8

关键词:工业废水;生物酶技术

一、印染废水处理面临的问题

1.排放标准的日益严格

随着社会经济的不断发展和人们环境意识的提高,我国加大了对印染污水的治理。根据《纺织染整工业水污染物排放标准》,除Ⅲ类污水排放指标变化不大外,国家增加了Ⅰ类和Ⅱ类污水印染废BOD、COD、色度、悬浮物、氨氮、苯胺类、二氧化氯等指标的排放限定。而印染废水水质一般平均为COD800-2000mg/L,色度200-800倍,pH值10-13,BOD/COD为0.25-0.4,因此印染废水的达标排放是印染行业急需要解决的问题。

2.印染废水组分复杂

印染废水是指印染加工过程中各工序所排放的废水混合而成的混合废水。主要包括:预处理阶段(如烧毛、退浆、煮练、漂白、丝光)排放的退浆、煮练、漂白、丝光废水;染色阶段排放的染色废水;印花阶段排放的印花废水和皂洗废水;整理阶段排放的废水。

二、酶催化技术

酶技术由于其工作条件温和,反应效率高,成本低廉,操作范围宽,能合成或处理难降解有机物,在废物治理、回收利用等领域得到广泛的应用。由于传统的生物方法对印染废水中污染物的去除往往不够理想,面对日益严峻的全球化环境污染问题,探求高效、低耗、投资省的印染废水处理新技术已日显重要。国内外许多学者致力于将环境工程技术与生物技术结合发展,产生了生物强化技术,所以以环境生物技术为新技术体系解决环境污染成为当今乃至未来发展的方向。酶与酶技术的开发与应用是环境生物技术中重要的部分,为环境污染治理提供了新的技术手段。

三、生物酶催化技术去除污染物的机理

将生物酶催化技术应用于污染物的去除,是采用不同于普通微生物菌的系列生物酶、菌结合技术,通过酶打开污染物质中更复杂的化学链,将其迅速降解为小分子,从高分子有机物降解为低分子有机物或CO2、H2O等无机物,降低COD值,从而达到去除污染物的目的,大大降低污水处理费用。

生物酶处理有机物的机理是先通过酶反应形成游离基,然后游离基发生化学聚合反应生成高分子化合物沉淀。与其他微生物处理相比,酶处理法具有催化效能高、反应条件温和、对废水质量及设备情况要求较低,反应速度快,对温度、浓度和有毒物质适应范围广,可以重复使用等优点。

四、酶催化技术在印染废水处理中的应用

针对目前印染废水的处理现状,我司应用生化工程技术与环境科学技术相结合,通过应用系统方法,对高效酶类的选用与开发、酶固定化载体的选择、酶生物反应器的研究与制造,以成本低、速度快、效率高、安全简便的操作解决环境污染中的废水处理问题。开发出新一代的环保用酶制剂和酶生物反应器系列产品,并且使该技术得到应用。即应用生物酶催化技术处理高难度印染废水,取得了一定的效果。印染废水中主要难降解物质是表面活性剂以及活性染料、阳离子染料等,采用针对性生物酶和微生物可直接分解上述污染物。在印染废水处理工艺中,投加专性生物酶,通过特殊生物酶的催化作用,增加废水的可生化性,出水可达到相应标准,并且在运行过程中,降低运行成本和工作强度,减少对环境的污染。

1.酶催化技术应用实例

广东某织染厂目前主要从事化纤染织生产,随着生产的发展、规模的扩大,日排放印染废水400m3,为了保护环境,环保部门加大力度督促现有印染厂的污染治理。同时随着环保意识的提高,生产企业决定在厂内建设废水处理设施,处理能力为400m3/d.废水的主要污染成分为:活性染料、分散性染料、酸性染料、浆料、助剂等。因此确定设计进水水质。

参照《污水综合排放标准))GB8978―1996及《纺织染整工业水污染物排放标准)GB4287―1992中的一级排放标准,确定处理后的水质目标。

由于印染废水中COD浓度高,BOD/COD=0.2左右,可生化性差,同时废水中含有苯系、萘系、蒽醌系以及苯胺、硝基苯、酚类污染物以及各种助剂污染物,增加了废水的处理难度,采用传统处理工艺不仅处理流程复杂,处理时间长,投资及运行费用增加,而且难以去除污染物。针对以上问题,我公司决定采用生物酶催化技术处理印染废水,特定的生物酶可以高效迅速降解COD,提高废水的可生化性,同时可大大降解染料中的苯系、萘系、蒽醌系以及苯胺、硝基苯、酚类污染物及废水中的各种助剂污染物,将其转化为小分子易生物降解的污染物。为后续生化处理创造有利条件,不仅工艺流程简捷、工程造价低、运行经济、便于管理,而且可以达标排放。即采用物化法+酶催化+厌氧+好氧的处理系统,废水处理效果好。

生物酶催化处理设施经过半个月的运行,可以看出,生物酶催化技术应用于难降解印染废水处理中,可以迅速高效去除污染物,酶催化进水中COD=1200--1250mg/L、BOD=400mg/L、SS=150―170mg/L,运行稳定后酶催化出水中COD=340mg/L、SS=66mg/L,其中BOD/COD=0.58,COD去除率可以达到72%以上,提高废水的可生化性,整个处理系统最终出水中COD=68mg/L,大大优于排放标准,同时特定的生物酶可将印染废水中苯系、萘系、蒽醌系以及苯胺、硝基苯、酚类污染物及废水中的各种助剂污染物,降解为小分子的有机物,很好的解决了印染废水中难降解有机物的降解问题,为后续生化处理创造有利条件,不仅可以减小构筑物的结构,同时可降低投资和运行成本。

2.酶催化技术优点

应用酶催化技术处理印染废水,可以高效迅速的降解废水中的污染物浓度,包括COD、BOD、染料中的苯系、萘系、蒽醌系以及苯胺、硝基苯、酚类污染物以及废水中的各种助剂污染物,并可提高废水的可生化性,为后续处理创造条件。

(1)污水处理效率高,出水水质好。与传统方法比较,酶促污水处理效率高出几十倍。BOD5的容积负荷为BOD525kg/m3,氨氮负荷为1.5kg/m3,一级处理COD去除率达90%以上,氨氮去除率达98%以上,SS去除率达90%以上。出水水质可达到相关标准。

(2)有效处理高浓度难降解废水,尤其是高浓度难降解印染废水。

(3)技术适应性强。生物酶可在常温常压、温和的反应条件下进行高效的催化反应,污染物中难降解物质在酶的催化下能得以处理,降解速度快,反应时间短,并且生物酶稳定性较高,有利于底物、产物的分离,可以在较长时间内连续装柱反应,其反应过程可以严格控制,可实现连续化、自动化的废水处理,提高了酶的利用效率,降低处理成本,大大提高处理效果;应用酶法处理废水,较之细菌法处理,生物催化直接,不产生因菌团生化过程产生的臭味和生物渣体,与目前的印染废水处理工艺相比,本工艺反应速度快、高效、直接。

(4)生物酶反应器需氧量小,不需要搅拌,可在常温下进行,在创造高效的同时实现了低能耗,是一种节能型的废水处理设备;其副产物少,载体只要简单的正压与负压反冲洗即可清除附着物;反应器的容积负荷可以根据进水水量与水质进行任意调节和控制,大大提高效率,降低工程投资成本;多级生物酶反应器可根据废水处理量,设并联或者串联,连接用管阀自动开启或闭合。

(5)酶生物反应器较之传统的生物滤池等菌群处理方法,基本无污泥产生,运行方便,操作简单,大大降低运行成本。在酶的参与下,提供同化作用和异化作用,得到最终的产物CO2和H20,较之固定化细胞作用更直接,减少菌群处理过程需要碳源与营养才能进行转化的过程,可在200℃~50℃条件下运行。载体结构设计科学,使得好氧、兼氧、厌氧菌种能共存于一体,许多难以用好氧微生物直接处理的难降解有机物可先经厌氧水解成小分子化合物,再经好氧代谢成无机物。

(6)运行中无不良气味,不产生池蝇。

(7)建设投资和运营成本显著下降。项目建设投资少,运行成本低。占地面积仅为传统方法的2/5―2/10,池容量仅为普通曝气池20%左右。项目建设投资为传统方法的65%左右,运行成本为传统方法的50%。

生物处理技术范文9

【关键词】水解酸化;生物处理;研究进展;发展趋势

引言

随着工业的发展,特别是随着石油、化工、塑料及纤维等工业的发展,造成的水污染相当严重,污水成分已愈来愈复杂,大量结构复杂、难降解的有机物质和有毒物质进入废水和城市污水中,很难在短时间内被常规生物处理系统中的微生物分解氧化[1]。为了解决高浓度、高毒性、难降解有机废水的处理问题,国内外学者们通过水解酸化并投加具有特定功能的微生物、营养物或基质类似物。目前。常见的污水的生物处理技术可分为好氧生物处理和厌氧生物处理。厌氧处理系统虽然具有剩余污泥少,成本低,能产生可利用的甲烷气等优点,但是其处理过程不稳定,不易控制,反应器初次启动缓慢,特别是出水COD浓度高,较难达到排放标准,故在厌氧生物处理系统后一般还需串联好氧处理系统,运用这种串联系统虽然使出水水质得到了改善,但由于厌氧段采用甲烷化,对操作和运行条件要求严格,原水中大量易于降解的物质(如有机酸等)在厌氧处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩余产物,因此,后续的好氧处理尽管负荷较低,但是处理效率也很低。直到80年代后出现了水解(酸化)好氧生物处理工艺,即从污水中获取养分,同时降解和利用有害物质,对废水中呈溶解态或胶体状态的有机污染物起到降解作用,从而达到提高废水处理效果[2]。该方法与生物技术处理相结合,加上生物处理法具有消耗少、运转费用低、工艺简单、操作管理方便和无二次污染等显著优点,这种所谓新兴治理方式得到了越来越多人的重视,并在全世界范围内得到了积极发展和应用,也取得了良好的经济和社会效益[3]。

1.水解酸化-生物处理技术的机理

1.1水解酸化机理

废水厌氧生物处理技术是指在分子氧不存在的条件下,通过厌氧微生物包括兼性厌氧微生物的作用,将废水中各种复杂的有机物质分解成甲烷和二氧化碳等物质的过程。厌氧生物处理过程中,复杂的有机化合物分解为简单的、稳定的化合物,并释放能量。其中,大部分能量以甲烷的形式被释放,而只有少量的有机物质转化为一个新的细胞成分。

大分子有机物的厌氧降解过程可以分为四个阶段,即水解阶段、发酵(或酸化)阶段、产氢产乙酸阶段与产甲烷阶段。水解阶段是将非溶解性的复杂的聚合物转化为溶解性的简单的单体或二聚体的过程。发酵阶段则是将溶解性有机物转化为以挥性为主的末端产物的降解过程,在发酵阶段,有机物化合物同时作为电子和电子供体,因此这一降解过程也称为酸化。在产氢产乙酸阶段中,发酵阶段的产物在产氢产乙酸菌的作用下被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。在最后的产甲烷阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

水解酸化处理是指将厌氧过程控制在厌氧生物处理的第一和第二阶段,即水解阶段与发酵阶段,在水解酸化处理阶段,兼性的水解产酸菌可以利用H2O电离的H+和OH-将复杂的有机物分子中的C-C打开,一端加入H+一端加入OH-,可以将长链水解为短链、支链水解为直链,环状结构水解为成直链或支链,从而把复杂的有机物转化为简单的无机物,提高污水的可生化性。

水解酸化的反应式一般可以写作以下形式:

R-X+H2O―>R-OH+X-+H+

其中,R表示大分子有机物的主体碳链,X表示分子中的极性基团。水解酸化工艺的优点除了将大分子有机物分解为小分子,减少后续工艺的运行时间外,还可以大幅度去除废水中的悬浮物和有机物,能够较好的抗冲击负荷,保证后续工艺的进水稳定性,并且产泥量小,易处理。水解酸化工艺的不足之处为,单独运行无法达到出水水质的要求,一般要与其他工艺联用。

1.2活性污泥法机理

活性污泥净化废水,主要依靠悬浮于水中的多孔性胶体絮状污泥。它是多种细菌组成的,至少有50多种。活性污泥中还含有多种原生动物,在曝气槽中装有各式曝气设备,进行强制通风,不断的提供氧气。净化作用分两部分:首先是活性污泥的表面吸附作用。包括物理吸附、电吸附和化学吸附作用,能吸附细小悬浮物、有机胶体和溶解性有机物。其次是生物氧化作用,被吸附的物质在细菌体内氧化分解,排出二氧化碳、水和氨,并繁殖细菌本体,使污泥恢复吸附能。曝气槽中,还繁殖有多种原生动物,它们不但食掉有机物,还以细菌为食料,以抑制过多污泥产生。活性污泥一般的流程是这样的:首先,废水流经一级处理系统除去硬渣、砂石和部分纤维等悬浮物。而后进入活性污泥曝气池,同时空气不断地通入池中,以维持废水中的溶解氧在l.0mg/L左右,并控制污泥浓度在6000-3000mg/L[4]。此时溶解性有机物被大量降解。最后,夹杂着活性污泥的废水进入沉淀池进行固液分离,上清液排出系统流入排放水体,沉淀的污泥一部分回流入曝气池,另一部分进入污泥处理系统。活性污泥法一般BOD负荷可达3-5kgBOD/(m3・d),其BOD去除率为60-70%,COD去除率仅为40%。

1.3生物膜法机理

膜生物反应器是将膜分离技术和生物技术有机地结合在一起,以膜技术的高效分离作用取代传统活性污泥法中的二沉池,实现传统工艺所无法比拟的泥水分离和污泥浓缩效果,消除了污泥膨胀的影响,并可大幅度提高曝气池中活性污泥的浓度,省却了污泥回流系统,反应器在高容积负荷和低污泥负荷、长泥龄运行下,大大减少了剩余污泥量,并通过膜的高效截留作用,可以使废水中大分子难降解成分截留在反应器内,延长了反应时间,大大提高了难降解有机物的降解率,并实现对悬浮物、病原菌和病毒的有效去除,提高处理出水水质,在通常情况下,其处理出水无需进行消毒处理即可达到相关的卫生标准[5]。

1.4生物接触氧化法机理

生物接触氧化法中,填料表面全为生物膜所布满,由于丝状菌的大量滋生微生物有可能形成一个呈立体结构的密集生物网而附着在填料上,同时由于曝气吹脱使部分絮体或碎裂微生物膜以悬浮状态存在于污水中。起初附着于填料表面只有少量的微生物,由于微生物的不断繁殖,在具备充足的溶解氧和丰富的营养物质的情况下,生物膜变得越来越厚。这是好氧菌通过吸收扩散到生物膜内溶解氧和有机物用于自身的生长代谢的作用。当生物膜厚度生长到一定程度的时候,生物膜内层不能支撑其表面的生物群体时,这时好氧菌开始死亡随之溶化,此时内层的厌氧菌开始得以繁殖发展。厌氧菌经过了一段时间的积累后其数量开始减少,又由于有代谢气体从内部跑出,便使得内层生物膜表面由于这种作用产生了出现许多孔道,生物膜的附着力明显降低,并成块的脱落下来,在脱落的填料表层,微生物又重新积聚成为生物膜,这样就使微生物能够保持良好的活性,新陈代谢处于良性循环。从而能够取得稳定的去除效率。生物接触氧化法中固着的生物膜不同于一般生物膜。生物膜的厚度取决于水中有机物的浓度和曝气量,通过在氧化装置中采用曝气方式,不仅为生物膜提供了较充足的DO,而且由于曝气的搅动作用,也使生物膜的更新速度加快,这样使得膜的活力与氧化能力会得到有效的提高。并且由于空气不断地打入水中,其不断的搅动水体能使污水形成了紊流,这样便使得污水与固着在填料上的微生物可以有效的相接触,对于生物滤池中可能存在接触不良的这种现象,通过曝气大大降低了其发生率。

2.水解酸化-生物处理技术的应用

随着生物处理技术的日益成熟,已广泛应用在多种废水的处理中.主要通过提高目标污染物的去除效果,改善污泥性能、减少污泥产量、缩短系统的启动时间,增强耐冲击负荷的能力和系统的稳定性、添加生物酶,加快反应进行。

李海英等为期1个月的连续处理造纸漂白废水试验表明,固定化细胞的酶活性及可吸附有机卤素(AOX)去除率均高于自由菌液,对温度和pH的适应范围较宽;在停留时间为2.4h时,其去除率可稳定在80%左右[6];

乔庆霞等选育优势菌处理含氯漂白废水中段水相对浓度为50%,pH为7.0,菌液量为2ml时,对废水中有机氯化物和COD的综合处理效果较好[7].生物增强作用比一般的废水处理方法更能提高系统对BOD5,COD,TOC或某种特定难降解物的去除效果。

韩长秀等利用投加高效菌种强化法处理牛奶废水,在延时曝气、曝气塘和氧化沟3种不同的处理系统,都提高了BOD5,COD的去除率[8];

刘晖用该方法处理马铃薯废水时,TOC的去除率达到98%;通过在活性污泥法中投加苯酚降解菌,在40d内处理系统对苯酚的去除率保持在95%~100%,而没有采用生物强化的中苯酚的去除率降低到40%,提高苯酚的去除率[9];

林俊岳在附着生长生物床中,加入降解BTX(苯、甲苯、二甲苯)的混合优势菌,生物增强系统的去除效果提高7mg/L BTX;生物增强作用不仅可以有效地消除污泥膨胀,增强污泥沉降性能,且可减少污泥产量,一般可使污泥容积降低20%左右[10]。

D.RenateHuebner.改善出水水质,减少污泥排放和污泥处理的能耗.结果表明,接种生物增强剂运行3周就可消除污泥膨胀现象[11];

潘景盛在大规模废水处理中,使用生物增强剂后,污泥床厚度下降到2m左右,降低能耗,控制臭气的产生,缩短系统的启动时间,达到较高的快速处理效果,增强系统的耐冲击负荷能力以及处理系统的稳定性[12]。

3.结语

从国内外废水生物处理法的研究与应用现状来看,不断推出更好的生物处理工艺,去除污水中溶解和胶体的有机物质的效率越来越高,污水出水水质好,达到排放标准,已成为在现代废水处理的研究热点。废水生物处理向着更先进、更高效、更节能、自动化程度更高的方向发展,细胞及微生物固定化技术的应用、新型填料与载体的开发应用、节能技术突出等领域取得长足的进展。该方法具有提高难降解有机物的去除率、改善污泥性能、缩短系统的启动时间、增强系统的运行稳定性和耐冲击负荷能力,显著提高水处理范围和水处理能力,具有工艺简单、经济、处理能力强、占地面积少、运行方式灵活等优点,是一种投资省、运行费用低、处理效率高的废水处理的新工艺。该技术广泛应用于生活污水、纺织、屠宰、造纸、核污染等废水处理.然而目前建造的废水处理工程与设施的投资和昂贵的运行、管理费用成为废水处理工程中的瓶颈。如何改善载体的结构,提高对微生物的附着能力、加强传质、提供更大的孔隙率和比表面积,改善材质以降低生产成本及运行成本等将成为这一领域中较为集中的研究课题。因此,生物强化技术与传统生物处理技术相结合,成为废水生物处理的必然趋势,对经济与环境的可持续发展具有深远的历史意义!

参考文献:

[1]鄂学礼,凌波.饮水污染对健康的影响[J].中国卫生工程学,2006,5(1):3-5.

[2]乔建强,王增长,董洁.微生物在污水处理中的应用[J].科技情报开发与经济,2007,17(10):128-129.

[3]罗娅君,赵仕林,朱明,周后珍.微生物在环境污染治理中的应用[J].四川环境,2001,20(3):41-44.

[4]王凯军,贾立敏.城市污水生物处理新技术开发与应用-水解-好氧生物处理工艺[M].化学工业出版社.2001.

[5]沈耀良,王宝贞.废水生物处理新技术理论与应用[M] .北京:中国环境科学出版社,2006.329-344.

[6]李海英,李小明.固定化微生物处理造纸漂白废水[J].工业用水与废水,2001,32(5):19-22.

[7]乔庆霞,陈敏,陈中豪.选育优势菌处理含氯漂白废水的研究[J].中国造纸学报,2004,19(1):3-56.

[8]韩长秀,林徐明.生物絮凝剂及其在水处理中的应用进展[J].水处理技术,2006,32(9):6-11.

[9]刘晖,周康群,刘洁萍,周遗品.微生物絮凝剂处理淀粉废水[J].仲凯农业技术学院学报,2004,17(2):47-50.

[10]林俊岳,庞金钊,杨宗政.高浓度洗毛废水的生物絮凝处理工艺研究[J].环境污染治理技术与设备,2004,5(2):60-63.

[11]D.RenateHuebner.FunktionsprinzipvonBiowaescherundBiofilter[J].Entsorgungspraxis,2000(5):35-38.

[12]潘景盛,常颖,林浩添.南方地区自来水处理生物技术的研发与应用实证分析[J].科技管理研究,2011(12):34-37.