HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

高电压技术论文集锦9篇

时间:2023-03-21 17:02:45

高电压技术论文

高电压技术论文范文1

从普遍意义上来讲,电能质量是指优质供电。但迄今为止,对电能质量的技术含义还存在着不同的认识,电力企业可能把电能质量简单地看成是电压(偏差)与频率(偏差)的合格率,并用统计数字说明电力系统的电能99%是符合质量要求的;电力用户则可能把电能质量笼统地看成是否向负荷正常供电;而设备制造厂家则认为合格的电能质量就是指电源特性完全满足电气设备正常设计工作的需要。相关文献中对电能质量的定义为:“导致用户设备故障或不能正常工作的电压、电流或频率偏差”。这个定义简明地概括了电能质量问题的成因和后果。 

2 电能质量与节能的关系 

电能质量与节能的关系,可以从两个方面来论述,一是控制电网电能质量会带来节能效益,二是节能技术对电网电能质量也有影响。 

2.1 电能质量控制的节能效益 

在各种控制电能质量的措施中,能带来节能效益的有两种:谐波抑制技术和无功补偿技术。 

谐波治理带来的节能效益:谐波会在电网和各种电气设备(旋转电机、变压器等)上造成大量谐波功率损耗,高次谐波分量比低次谐波分量更容易引起损耗(但电网中高次谐波含量一般远低于低次谐波,谐波损耗主要还是由低次谐波引起)。因此,采用各种谐波治理措施消除公用电网谐波,可有效降低谐波功率损耗,带来重大节能效益。 

无功补偿措施带来的节能效益:功率因数是供用电系统的一项重要技术经济指标,用电设备在消耗有功功率的同时,还需大量的无功功率由电源送往负荷,功率因数反映的是用电设备在消耗有功功率的同时,所需的无功功率。对于农村用电负荷来说,主要是一些小型加工业及照明负荷,其中大部分设备为感性负载,其功率因数都很低,影响了线路及配电变压器的经济运行。通过合理配置无功功率补偿设备来提高系统的功率因数,从而达到节约电能、降低损耗的目的。 

2.2 节能技术对电能质量的影响 

节能技术对电能质量的影响主要体现在两个方面,一是各种节能设备的使用有可能恶化电网电能质量,二是各种扩展节能技术的使用也会导致电能质量变差,如并联电容补偿装置参数配置不合理引起的电网谐振、分布式发电技术引起的电网电压和电流的畸变。 

目前得到广泛使用的节能设备有节能灯具、高效率空调和热泵、高效率电动机以及高效率烘干机等,它们都使用了电子开关技术。 

3 电能质量治理控制与节能效果 

下面简要介绍谐波抑制、无功补偿、电压调整以及频率调节等几种治理控制技术,并对电能质量控制的节能效果进行简单分析。 

3.1 常规谐波抑制与无功补偿技术 

常规谐波抑制与无功补偿技术,主要是无源型的LC滤波补偿技术,是最为广泛采用的电能质量治理控制手段,也是实施节能降损的主要途径。与该技术相关的研究内容有无功补偿量的确定、无源滤波器组的参数设计等。 

3.2 自动电压控制技术 

电压质量的控制是运行关注的重点。近年来,随着经济的持续稳步发展,系统负荷增长较快,电网结构日趋复杂,跨区域远距离输电的交流输电通道或交直流并联输电通道越来越多,在某些受端负荷中心动态无功备用不足和输电通道过于集中,增加了电压调控的难度,降低了系统运行电压的电压质量和合格率;在发生系统故障时,增加了全网电压失稳和崩溃的可能性。同时,电网运行损耗也将增大,降低系统运行的经济性。 

3.3 串联补偿技术 

串联补偿技术主要分两类。第一,固定串补(Fixde Series Compensator,FSC)。它是补偿度(补偿电容器组的容抗与补偿线路的感抗之比)固定的串联补偿装置。第二,可控串补(Thyristor Controlled Series Compensater,TCSC)。它是利用电力电子手段调节补偿度的串联补偿装置。 

3.4 按频率、电压减负荷技术 

按频率、电压减负荷普遍采用基于反映检测的稳定控制原理,即按照预先规划好切负荷的方案,包括切负荷频率、电压水平的确定,切负荷地点、切负荷量的确定以及合适的切负荷时间等,当系统发生严重故障扰动时,引起的系统频率、电压降低到预先给定的某个水平并经预定的时延后,实施切负荷。 

3.5 电能质量控制的节能效果分析 

高电压技术论文范文2

关键词:低压直流;配电技术;电力系统;电力电子技术;换流器;滤波器 文献标识码:A

中图分类号:TM721 文章编号:1009-2374(2016)33-0127-02 DOI:10.13535/ki.11-4406/n.2016.33.062

1 概述

近年来,人们对电力系统的要求越来越高,电力电子技术的发展相对成熟,更多先进的、满足人们不同需求的电力技术被应用到电力系统中。比如,相对高压直流配电技术的广泛运用,低压直流配电(简称LVDC)也逐渐得到了国内外学者的关注和电力系统中的运用。虽然早期配电系统中的直流配电技术存在电压过低、容量小和输送距离短等不足,并且一度被交流技术所取代,但是随着电力系统不断完善和改进,直流配电技术在元器件上的改进,如降低换流器的造价成本和耐压值、提高电流输送量等,使本技术重新得到了广大的关注。

从早期的研发到后期的改进,重新得到重视,可以看出低压直流配电技术一直是人们研究的热点,比如LDVC技术分析和问题研究等。研究的重点主要是围绕如何提高电力系统的传输能力和如何最大程度降低传输过程中造成的损耗等。相对交流电来说,后期得到广泛应用的直流配电拥有的优势包括:(1)直流电流不受输电线路电感的影响,从而提高电能输送;(2)直流配电电压要比交流电配电电压高,从而延长了电能的输送距离,保证了电能的输送质量。

本文详细介绍了低压直流配电技术,包括低压直流配电技术的类型、主要元器件和理论基础等,并对此技术中存在的问题加以分析研究。低压直流配电技术一直都是电力领域讨论的重点,在其取得可观成绩的同时,也存在着诸多严重的不足,如输电电压、电容量和输电距离等。随着电力电子技术的逐渐成熟,研究人员只有不断对低压直流配电技术的研究和改进,才能保证电力系统的可靠度和高效运行,满足现代人对电力系统更高的要求。

2 低压直流配电技术的综述

电力系统中,随着高压直流输电技术的不断成熟,其应用范围不断扩大。2009年12月,世界第一个达到±800kV特高压的直流输电工程建成,其起始点是云南,终点为广东,此直流输电线路电压从0kV成功升至800kV。直流配电从此以后便成为在更换线路成本较高时首要的替代选择。相较高压直流配电技术,低压直流配电技术在电力系统的运用较晚,究其原因,低压直流配电技术有其自身的不足,同时人们对这些问题的研究还不够深入,尚未妥善解决,这跟低压直流配电系统分类复杂有一定的关系。因此,相关研究人员有必要进行更深层次的钻研并且解决相应问题是推动整个电力系统安全高效运行的基础。本文在此对低压直流配电技术的分类、主要组成元器件、特点及基本原理做了详细的介绍。

2.1 低压直流配电技术的分类

2.1.1 按拓扑分类。(1)高压输电型。此类型的配电技术系统中的两个交流系统通过连接一条直流线路而相通。用电用户可以与直流系统连接,并且多个用户可从一个变流器中获取电能;(2)辐射型。此类型的低压直流输电系统中与高压输电型有明显不同的是,本系统中的用户与直流系统不直接相连,并且每一个用户对应唯一的变流器。

2.1.2 按直流输电系统中连接方式分类。(1)单极型。单极型的低压直流配电系统是利用一条导线来连接,通常情况以大地或水作为返回回路,显示负极特性。但是,在强的干扰情况下,如电阻率太高或者其他金融结构性干扰等,用金属代替大地作为返回回路,并且使金属回路在低电压下运行。更特别的是,必须用额定电压器来测量每端的直流电源,两级结构的运行可独立开来。(2)双极型。顾名思义,双极型的低压直流配电系统是用正负两条导线连接的,是比较常见的配电系统类型。系统两端在直流侧串接两个换流器,这两个换流器额定电压相同,同样两极运行可独立。需要特别注意的是,接地电流对附近的煤气或天然气管道可产生局部影响,由于管道可作为导体,从而有可能对金属造成腐蚀,因此用大地作为回路时需要妥善解决此类问题。

2.2 低压直流配电系统的组成元件

2.2.1 换流器。换流器是完成交流/直流(AC/DC)和直流/交流(DC/AC)之间变换的元件,由阀桥和带负载调分接头的变压器组成,其中阀桥是由电力电子元件的六脉或十二脉电路组成。

2.2.2 平波电抗器。平波电抗器串联在换流器的每个极上,其规模和规模相对都较大,用途是减小直流线路内的谐波电压和电流、保证轻载电流的连续、防止逆变器的性能降低和一旦发生短路时能够限制整流器的峰值电流等。

2.2.3 滤波器。滤波器就是一个过滤掉交流电与直流电运行中产生的谐波形式的元件,从而避免或降低干扰因素对电力电子元件的影响。

2.2.4 无功源。换流器在工作过程中离不开无功功率,因此换流器周围需要安装无功功率装备,同时交流滤波器在运行过程中也会产生部分无功功率。

2.2.5 接地。通常情况下,直流系统以大地为接地;特殊情况下,如大地电流过大或电阻率过高时需要特别安装接地极。

2.2.6 直流线路。架空线或电缆可以用来做直流线路。

2.3 直流配电技术特点

直流配电技术主要采用直流形式进行电能输送,其相对交流配电技术有一定的优势。

2.3.1 可靠性高。直流配电线路中需要两根导线,其线路可靠度相对同电压等级的交流线路要高。当其中一条线路出现故障时,另一条线路与大地构成回路,继续输送功率,对于处理不完全故障的反应速度相比,直流配电技术更快,修复时间更短,甚至可以通过其他手段来自动排除故障、恢复线路正常运行等。

2.3.2 效率更高。在直流配电系统中产生的损耗很小,比如相对交流电产生的损耗,直流电中除了电力电子变换器损耗外,几乎没有无功功率的网络损耗和集肤效应损耗。随着科技的不断完善,变换器的效率也在快速提高。

2.4 换流器理论

由上述对低压直流配电系统主要组成元件的叙述和特点的分析,本段对其中换流器理论加以分析。对换流器理论的研究就要从换流器的电路、交流电流跟相位的关系以及逆变器的工作原理等方面进行。

2.4.1 换流器电路。换流器电路主要是三相全波桥式电路形式,三相全波桥式电路形式相较其他接线模式有更高的电压器利用率。换流变换器通常在交流侧具有带负载调分接头用来控制电压,通常用中性点接地的星形接线或者三角形接线。系统内部恒定电压和频率,是直流电流在恒定状态下将电子器件作为安全可靠的开关。接通电源时,电阻为零;在断开状态下电阻无限增大。

2.4.2 交流电流和相位的关系。交流电流和相位关系的判定可通过变量和常量设置来确定。无论是整流还是逆变状态,换流器都需要吸收无功功率来进行正常运行。在各常量达到标准时便可实现无功补偿。

2.4.3 逆变器。与HVDC系统逆变侧的交流输出不同的是,低压直流配电的交流输出可以是单相。因为低压配电网的形式主要是辐射型,线路多数连接用户和电源。由于用户一般情况下只使用单相交流电,因此逆变单元可只利用单相逆变或者三相逆变。

3 低压直流配电存在的问题

3.1 谐波

大量电力电子器件的广泛运用产生了谐波。低压直流配电系统中的变流器主要由电力电子电路组成,本节主要分析了变电器中谐波的特性,并对滤波器设计做简要说明。

3.1.1 低压直流配电系统交流侧的谐波。低压直流配电系统交流侧产生的谐波,其波形并未有换相重叠或没有脉动现象,可以采用设定或假定的方式对正弦换相的电压和换流器的间隔程度加以计算等。

3.1.2 滤波器。凭借当前的研究水平,研究谐波的方法目前有两种:设置滤波器和改造谐波源。通过改变滤波器电容来提高整流装置相数和无功补偿部分功能,这样能同时减轻无功补偿装置负担和降低设备运行成本。

3.2 谐波与无功补偿

低压直流配电系统主要通过无功功率来控制电压,且低压直流配电系统的无功功率损耗较大,因此无功补偿技术在低压直流配电系统运行中尤为重要。要实现更好地控制无功功率,可通过电容器并联方法,将电容器并联既节约成本、操作简单,又方便灵活,成为控制无功功率的主要方式。

3.2.1 谐波对并联电容器影响。谐波电流在电容器基波上的叠加使电容器的电流增加了利用价值,温度的升高容易降低电容器的寿命。

3.2.2 电容器并联对谐波影响。电容器并联后参与到低压直流配电系统的运行,造成系统谐波阻抗感性或者容性的变化。另外,针对特定的谐波来说,电容器并联可能还会与低压直流配电系统发生并联谐振等现象。

3.3 电力电子元件可靠性

变流器被运用到低压直流配电系统中是影响电力电子元器件寿命、干扰系统电路可靠度和引发电力电子元件故障的因素。寿命问题继而影响到了元件的维护成本和整个系统中换流器的运行成本。

3.4 低压直流配电的电能质量标准

低压直流配电系统连接了用户和电力系统,用户侧交流用电系统和整流变压器一侧电能质量的评价考核应与交流系统的要求一致。低压直流配电系统的完善是为了更加高效地进行电能输送,因此保证换流器的效率、线路的可靠性和电力电子元件的寿命是电力系统正常、高效运行的基础。

参考文献

[1] 林立功,高永乐.低压直流配电技术分析和存在的问 题[J].电工电气,2013,3(9).

高电压技术论文范文3

关键词:仿真法;模拟电子技术;教学

为了使学生能够更好的掌握专业知识技能,高校必须对传统的教学方式作一定程度的改革,使培养的专业人才能够满足现代化社会的需求。传统的教学方式主要由教师引导学生进行专业知识的理解,不注重理论与实践的结合,本文就《模拟电子技术》教学为例,探讨如何将仿真法运用到在实际教学过程中,让学生熟练掌握专业技能,才能更好的适应现代社会的发展。

一、仿真法在《模拟电子技术》教学中应用的必要性

《模拟电子技术》作为电子、电气、通信等专业的重点课程,其中包括多种形式的放大电路、集成运算放大器、振荡电路等难点内容,还涉及到二极管、三极管、电源、电容、电感等很多电子元件,过多分散的知识点给学生带来了很大的记忆压力,再加上电路原理枯燥难懂,传统的教学方式让学生的学习变得很被动,学生没有实际的操作经验,根本达不到理想的教学效果。

二、仿真法在《模拟电子技术》课程教学中的应用

(一)仿真法教学法的分类

一是实验性仿真教学,理论讲解加实验课学,在理论知识讲解之后,进行实验操作,加深学生对内容的理解,同时提高学生的实际操作能力,加强了理论与实践的结合教育;二是设计性仿真教学,对单元课程的教学任务完成之后,制定一个小型的设计任务,让学生结合单元内容自主完成设计,加强对整个单元知识的融会贯通,并为以后的项目设计打下坚实的基础;三是综合性仿真教学,设计整体项目,并在实际中应用,锻炼学生的综合技能,让理论与实践相结合,锻炼学生的项目创作能力与设计制作能力,达到教育的最终目标。

(二)仿真法应用在《模拟电子技术》课程教学中案例

1、电压比较器的制作

电压比较器是应用比较广泛的常用集成电路,在实际的报警电路、自动控制电路中很常见,而且也可以用于A/D变换、过零检测等常用电路中,也是《模拟电子技术》的一个重点教学内容,在教学过程中首先要讲解一下电压比较器在实际生活中应用,让学生对此有一个比较直观的了解,在教学过程中结合实际案例,对学生进行细致的内容讲解。

图1 为电压比较器的电路原理图,UR为参考电压,加在运放的同相输入端,Ui加在运放的反相输入端,当UiUR时,运放输出低电平,稳压管正向导通。了解电路原理之后,对学生对电路进行高低压测试,根据电压由低到高的变化,观察二极管的亮灯数量,根据二极管的明暗变化,观察电压的变化情况。

打开仿真开关,调节电位器就可看到发光二极管指示灯依次点亮。为了验证当前输入电压与阈值电压比较结果的正确性,在每一路都接上电压表,进行仿真,我们就能观测到随着输入电压的降低,指示红灯依次亮起,相当于对电压过低的警报。这个实例边讲解边搭建,留给学生分析、思考的时间,允许中间出错,允许更改电路设计,在试错、仿真、再改进、再仿真的过程中,逐渐得出最佳解决方案。对电压比较器的理论知识与实际应用都有了全面的了解,而且提高了学生的动手能力,使《模拟电子技术》在教学过程中更实际化,让学生更容易接受。

2、放大器静态工作点的设置

在三极管放大电路中,静态工作点是指在零信号输入状态下,电路处于直流工作状态,电流与电压的数值在BJT特性曲线上可以用一个确定的点表示,该点通常被称为静态工作点Q,如果Q点设置不合理,会导致输出放大波形将严重失真。因此,在《模拟电子技术》教学过程中,首先要对三极管放大电路的工作原理进行详细讲解,利用仿真软件,让难懂的电路工作原理变得更加生动形象,学生可以利用仿真软件,对偏置电阻的阻值进行调整,观察在阻值变化状态下,放大器的波形输出情况,进而了解静态工作点对电路的影响。

利用仿真系统对三极管放大信号的输出波形进行分析比较,根据正常波形与失真波形的差异分析,在实际教学过程中,让学生自己动手操作,观察两种波形状态下静态工作点的状态,然后连接实际电路,接入输入信号,根据示波器的波形变化,对电路进行调整,完成电路连接与调试。

三、结语

本文总结了《模拟电子技术》教学的特点和实际应用的一些典型案例,在信息化时代飞速发展的社会,教育要结合实际进行创新与改革,注重理论与实践的结合,为现代化建设的发展提供综合素质与技术能力优秀的人才。

参考文献:

高电压技术论文范文4

关键词:电磁兼容 谐波 国家标准

0 概述?

从1998年开始,我国的电磁兼容(EMC)标准中计有二三十项取自(等同或等效)国际电工委员会(IEC)近年来颁布的IEC 61000系列标准文件[1]。

众所周知,各种电气设备之间以电磁传导、感应和辐射3种方式彼此关联并相互影响,在一定的条件下会对设备的正常工作和人类造成干扰和危害。20世纪80年代兴起的电磁兼容学科就是以研究和解决这方面问题为宗旨的。该学科的着眼点是对干扰的产生、传播、接收、抑制机理以及相应的测量、计量技术进行深入的研究,在此基础上,根据经济、技术最合理的原则,对产生的干扰水平、抗干扰水平,以及抑制措施作出明确的规定,使处于同一电磁环境的设备都是"兼容"的。也就是说,一个设备(或装置、系统)在其电磁环境中满意地执行其功能,而又不向该环境中的任何实体引入不能允许的电磁扰动。

?EMC的基本任务是协调干扰发射者和承受者之间的关系,使其"兼容"。协调的办法是制定合理且配套的规定值。协调中所涉及的几个参数关系如图1所示。图中横坐标为独立变量,如频率、电压偏差值、谐波含量、电压波动和闪变值、三相电压不平衡度等。?

图1 电磁兼容协调中的有关参数

实际上EMC兼容水平是为了达到协调的目的而定出的一个参考值,有这一参考值便可以采用适当的方法和裕度,确定干扰源的发射限值以及电气设备抗干扰限值,从图1中可以一目了然。

IEC 61000系列标准包括6个部分:①总论,61000-1包括总的考虑(介绍、基本原则)、定义、术语;② 环境,61000-2包括环境描述、环境的分类、兼容水平;③ 限值,61000-3包括发射限值、抗扰限值;④ 试验和测量技术,61000-4包括测量技术、试验技术;⑤ 安装和抑制导则,61000-5包括安装导则、抑制的方法和装置;⑥ 杂项,61000-6。以上每一部分均有一套标准,目前已正式出版的文件只是其中一部分。

?IEC 61000系列标准文件实际上分为国际标准类文件和第一、二、三类技术文件。其中第一类技术文件是"尽管经过再三努力而不能作为国际标准出版"的;第二类技术文件是"文件主题仍处于技术发展阶段,或者由于任何其他原因在今后而现在不能马上同意作为国际标准"的;第三类技术文件是"当技术委员会在例行出版国际标准的过程中,搜集到各种资料,这些资料一般不是作为国际标准公布的,例如'技术的状况'"。第一类和第二类技术报告自出版时起到决定它们是否能够成为国际标准的3年内会受到复审。第三类技术报告则直到认为提供的资料不再有效或有用之前,没有必要再进行复审。

?对于IEC标准文件,应根据其性质和内容,结合国情采用,以适应我国加入WTO后的形势和需要。涉及IEC国标标准类文件,应尽量等同或等效采用。对于技术类文件,应有分析地吸收其中先进的适用部分,以修订和完善相应的国家标准。

1 电网谐波国标和EMC标准的基本关系

?保证电能质量,以使用户安全、正常用电是电力部门的职责。但电能质量和一般产品质量不同之处在于它不完全取决于电力生产企业,有的质量指标(例如:谐波、电压波动和闪变,三相电压不平衡度)主要由用户负荷的干扰所致。因此电能质量的保证,需要供用电双方共同努力,共同承担相应的责任。

?国标GB/T 14549-1993是以限制电网中非线性负荷产生的谐波干扰,保证公用电网谐波电压水平在合理范围内为目标的。因此,标准中规定的各级电网谐波电压限值对应于图1中"发射限值"线。例如,国标中规定低压(380V)电网谐波电压总畸变率(THDU)为5%。而IEC 61000-3-6(即国标指导性文件GB/Z 17625.4-2000《电磁兼容 限值 中、高压电力系统中畸变负荷发射限值的评估》)中引用了IEC 61000-2-2和IEC 61000-2-4(均为国标标准)的中压和低压兼容值THDU为8%,这两者没有矛盾。截止到2000年底,已采用为国标的与谐波相关的IEC 61000标准文件如表1所列。IEC 61000是一个EMC庞大的标准体系,每个标准文件的内容均比较丰富,如综合某指标的各部分的相关内容就成为该指标较为完整的标准。例如,在IEC 61000-3-6中,不仅包括谐波电压兼容值和规划值示例,还对谐波的合成计算,中、高压负荷的谐波限值三级处理方法,供电容量的确定等,均作了规定和说明,其中包括对间谐波和电话干扰影响的研究成果,并以附录形式给出谐波阻抗和三级处理方法的计算实例

。在GB/T 17626.7-1998(即IEC 61000-4-7)中规定了用于谐波测量的仪器主要性能、准确度要求,总结了电压和电流互感器谐波测量的误差,提出对不同波动性质的谐波测量规定等。这些对于将来谐波国标的修订均很有参考价值。我国依据这套标准文件的具体内容,以不同形式(等同、等效;强制性、推荐性或指导性)采用,以加快国家标准现代化的步伐是完全正确的。

??

因此,作为电能质量的谐波国家标准和IEC 61000系列EMC标准是既有联系、又有区别的2套标准。从限值上讲,谐波国标不应超过IEC规定的EMC兼容水平,在此原则下,谐波国标的限值应根据国情经研究论证确定。从谐波指标分配、计算和测量等内容看,在吸取相关EMC标准文件内容基础上,使标准做到兼顾科学性、合理性和可操作性,这就是二者的基本关系。下面结合国内在谐波标准方面的一些不同认识,谈谈笔者的看法。

表1 已采用为国标的与谐波相关的IEC 61000标准文件

国标编号

国家标准名称

相应的IEC标准

采用程度

GB/T 17626.7-1998

电磁兼容 试验测量技术 供电系统及所连设备谐波、谐间波的测量和测量仪器导则

IEC 61000-4-7;1991?(国标标准)

等 同

GB 17625.1-1998

低压电气及电子设备发出的谐波电流限值(设备每相输入电压≤16A)

IEC 61000-3-2;1995?(国际标准)

等 效

GB/Z 17625.4-2000

电磁兼容 限值 中、高压电力系统中畸变负荷发射限值的评估

IEC 61000-3-6;1996?(第三类技术报告)

等 同

GB/Z 18039.1-2000

电磁兼容 环境 电磁环境的分类

IEC 61000-2-5;1995?(第二类技术报告)

等 同

GB/Z 18039.2-2000

电磁兼容 环境 工业设备电源低频传导骚扰发射水平的评估

IEC 61000-2-6;1995?(第三类技术报告)

等 同

正确的。下面举2个低压电网谐波水平调查实例,说明IEC相关规定的合理性。例1:从1998~2000年对北京20个居民配电小区和3座居民楼进行了长时间的谐波监测,发现60%的监测点在用电高峰时段内,电压总畸变率和3次谐波电压含有率都超过国标限值(分别为5%和4%),个别高达7?66%[4]。例2:从1988~2000年,日本低压THD由3%增加到7.5%,超过5%的标准[5]。从以上调查看,低压电网谐波水平不断增加是确定无疑的事实,但总体上仍在IEC的EMC标准的范围内。当然,低压超过国标现行规定5%,是否一定要修改限值,这要看超标的原因、超标的范围和影响,以及抑制措施的技术经济效益等多种因素,经综合分析比较后才能决定的。

3 关于第三类标准技术文件

?前面已经指出,IEC 61000系列标准文件是很具有参考或使用价值的。对于其中的第三类技术报告,国内一般以GB/Z形式等同采用,即作为标准指导性文件的。对属于这一类文件的IEC 61000-3-6,目前认识上有二种偏向:一种认为这不是国标标准类文件,仅仅是一个技术报告,"认其为'指导性文献'都是不慎重的"[2],实际上否定该文件在标准上的指导作用;另一种认为应该用这类文件中的限值(兼容水平)取代电能质量相关指标,这实际上把电磁兼容标准混同为电能质量标准。此外,还把一些相关的限值孤立对待(例如,只要高、中压谐波限值提高,不考虑低压限值相应提高的可行性)。

?IEC 61000-3-6中系统地汇集了大量谐波方面很有参考价值的资料,这些资料中有的是国标标准(例如中低谐波电压兼容水平),有的是工作组研究成果或推荐的方法(例如规划水平示例、发射限值的三级评估处理办法,一些工程计算方法,测量的原则等)。对待这样一个文件用"非IEC国标标准的性质"笼统地加以否定,而不考虑其具体内容的作法是不妥当的。 4 电网谐波国标和EMC标准的若干区别

?在第1节中已论述了电网谐波国标和EMC标准在限值上的关系。实际上这2套标准还在下列方面存在差别:

?(1) 内容、范围。谐波国标(GB/T 14549-1993)解决电网中谐波指标的控制问题,因此内容上主要规定了各级电网谐波电压限值,用户谐波电流允许值的分配计算以及测量等内容;EMC涉及谐波方面标准有若干个(表1中所列仅是一部分),有设备的谐波、电网的谐波、电磁环境的分类(不同类环境有不同的兼容水平)、谐波测量仪器及测量要求、抑制谐波的导则(尚未见文本)、谐波源试验、抗谐波干扰的试验等,根据不同的内容,分散的IEC 61000系列标准6大部分中,各自成为独立标准文本。因此电网谐波国标不只是和IEC 61000-3-6有关,而IEC 61000中有关谐波的规定内容要丰富得多。

?(2) 运行方式的考虑。EMC标准从干扰角度定出的谐波电压兼容水平可以不涉及电网的运行方式,然而把干扰指标分给用户(这是电能质量标准的任务)就不能不考虑运行方式,因为电网谐波电压水平不仅取决于谐波源(一般视为电流源),也取决于谐波阻抗。后者和电网结构及其运行方式有关。谐波国标中只推荐用短路容量换算出基波阻抗乘以谐波次数得出谐波阻抗的方法。为了得到一般较严重的情况,国标中规定取正常方式下最小短路容量来换算,这样处理是比较粗糙的,虽然可操作性强,但对于高压电网中可行性缺乏依据。IEC 61 000-3-6文件中根据CIGRE工作组的研究报告,推荐了35 kV及以下系统的谐波阻抗经验公式(和国标中换算谐波阻抗的方法有很大不同),对于电压更高电网的谐波阻抗则认为只能用仿真计算或实测解决。IEC对谐波阻抗的考虑更具科学性和工程上实用性。

?(3) 其他。对照IEC 61000系列标准文件,电网谐波国标中还存在诸如限值规定,对用户的分级管理,间谐波以及测量仪器和测量方法等方面差别,这些问题已在文献[6]中作过论述,不再重复。

5 结论

?IEC 61000系列标准文件对电网谐波国标有指导作用,正确理解这2套标准的性质及其相互关系,纠正在标准认识上不正确的偏向,对修订和完善国标有重要意义。

?本文针对IEC 61000-3-6和GB/T 14549-1993 2个标准文件在国内出现的一些争论焦点,提出笔者的看法。最后从限值、内容范围、运行方式的考虑等方面比较了这2个文件,可以供修订谐波国标时参考。

6 参考文献

[1] 姚世全.电磁兼容标准实施指南. 北京:中国标准出版社,1999.

[2] 曲涛. 关于澄清电网谐波与电磁兼容的若干问题. 中国电力, 2001,34(3):29~32.

?[3] Working Group 36.05, Harmomics, Characteristic Parameters, Methods of Stuay, Estimates of Existing Values in the Network.CIGRE.Electra, 1981(77).?

[4] 陈斌发.配电变压器接法对谐波影响的分析. 电网技术,2001,(6):55.

高电压技术论文范文5

关键词:低压 无功功率 无功补偿 技术

随着全球能源的日趋减少,节能损耗已经成为了各国发展的长期战略方针。而电能作为一种被广泛使用的能源,是我国节能损耗方针的重要保护领域。其中的无功功率补偿技术则是电能节约损耗措施中的重中之重,此技术不但可以减少电力系统的电压损耗,还可以降低电压波动,从而有效的改善电能质量,降低电能损耗。本文就低压无功补偿技术的发展进行简要论述。

一、概念界定

所谓无功功率补偿,是指在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。在长距离输电的前提下,如果选择合适的地点设置此技术装置,可以提高电网的稳定性,从而大大增加输电能力。如果在配置无功补偿技术装置时,选择在受电端侧,则不但可以减少设备储存的容量,提高用电可承受负荷的系数,还可以有效提高供电能力,最终达到节能损耗的目的。

二、低压无功补偿原理的发展

相对于现代的无功补偿技术的设备来说,传统的无功补偿设备的装置主要有调相机、并联电容器以及同步发电机等。但是由于传统的这些设备中,例如并联电容器不能很好的跟踪无功功率的具体变化,且调相机和同步发电机等技术设备无论是损耗能源量还是噪音都会产生较大的浪费或者影响。并且传统的无功补偿设备在选择电压时也十分挑剔,因此随着电力系统的大发展,这些传统的无功功率补偿技术设备已经不能适应需要。

随着对于无功功率补偿技术研究的进一步深入,20世纪70年代以来出现了一种被称为静止无功补偿的技术。可以说从20世纪70年代到如今,静止无功补偿技术经过几十年的发展,经历了一个不断创新和完善的过程。值得指出的是,现今所指的静止无功补偿装置一般专指无功补偿设备中使用晶闸管的设备,主要有以下三大类型:第一类是简称为SR的具有饱和电抗器的静止无功补偿装置;第二类是简称TCR的晶闸管控制电抗器与简称TSC的晶闸管投切电容器,这两种装置并称为SVC;第三类是简称为ASVG的静止无功补偿装置,其是采用自换相变流技术的高级静止无功发生器。以下笔者对这三类静止无功补偿装置进行简要介绍。

(1)具有饱和电抗器的静止无功补偿技术装置(简称SR)

由于饱和电抗器具体可以分为自饱和电抗器和可控饱和电抗器,由此静止无功补偿技术装置也相应的分为两种类型。首先,根据自饱和电抗器分出的无功补偿装置。此技术装置可以说是依靠电抗器自身的性能用以稳定电压的。换句话说,铁心的饱和特性所具有的电抗器的固有特性使得无功功率的高低大小被控制。而对于可控饱和电抗器来说,这种类型的静止无功补偿技术设置则通过改变工作电流的饱和程度,这种工作电流是攒在于控制绕组中的固有电流,通过此种方式来改变无功电流的大小。英国于1967年就制成了此种装置。随后,美国的通用电气公司,简称GE,也同样做出了此种静止无功补偿技术设备。但是,随着时代的发展,这种设备渐渐包露出造价高,并且电抗器的可负载能力偏低导致铁心损耗极大,设备的震动和噪音也是让研究人员难以忽略的问题。因此,此种静止无功补偿设备的目前应用仍然不多,一般只出现于高压输电线路的应用上。

(2)晶闸管控制电抗器(TCR)

为了达到调整无功功率的效果,可以将两个反并联的晶闸管与一个电抗器相串联,链接成三角形,在电网中并入这样的电路相当于交流调压器电路接电感性负载。当延迟角 时,晶闸管全导通,导通角 ,此时电抗器吸收的无功电流最大。在实际的工程中,通常将降压变压器设计成具有很大漏抗的电抗变压器,这样就不需要单独接一个变压器,也可以不装设断路器。好的调速电路有RC阻容吸收网络,解决可控硅导通与截止对电网的干扰。电抗变压器的一次绕组直接与高压线路连接,二次绕组经过较小的电抗器与可控硅阀连接。如果在电抗变压器的第三绕组选择适当的回路,例如加装滤波器,可以进一步降低无功补偿产生的谐波。需要指出的是,滤波器一个支路,只能滤除一次谐波成份,要滤除多次谐波,就要做多个滤波支路。

(3)晶闸管投切电容器(简称TSC)

晶闸管投切电容器,是在解决晶闸管控制电抗器的弊端基础上产生的。晶闸管投切电容器技术最为关键的一环是对于投切电容器时间的选取。经过相关研究人员多年的深入研究,认为投切电容器的最佳时间是电源电压与电容器两端电压相等的时刻。因为这个时间投切电容器,电路的冲击电流为零,可以减少风险。但是这种技术设备在运用时,要先对电容器进行充电,然后才可投入电容器,目的是方便更好的投切电容器,进而实现节能损耗。晶闸管投切电容器的另一项优势是对于无功功率的补偿可以达到很好的效果,甚至可以实现无级调节。一些晶闸管投切电容器的运行实践证明此装置还具有轻便、反应快速等优势,并且对三组不平衡的负荷可以依次进行补偿,操作过程中减少了风险,产生危险电压的系数基本为零。但晶闸管投切电容器的弊端的存在我们也不能忽视,晶闸管投切电容器对于电压闪变,尤其是抑制冲击负荷引起的电压闪变的调节还是不够的。所以晶闸管投切电容器装置一般与电感并联,以达到改善此弊端的作用。

(4)新型静止无功发生器(简称ASVG)

L.Gyugyi提出无功补偿的理论之后,世界各国科学家对于无功补偿技术的研究愈发的深入,静止补偿器的出现就是其中的一项成果,这种静止补偿器是利用变流技术进行动态无功补偿的。根据采用电容和电感两种不同的储能元件,新型静止无功发生器可以分为电压和电流两种类型。电流型的新型静止无功发生器是在将电抗器代替直流侧的电容器基础上,再用并联电容代替交流侧的串联电感由此制成。但是要注意的是,无论是电压还是电流型的无论是电压型新型静止无功发生器,所作用于他们的动态补偿原理相同的。

参考文献:

[1]任丕德,刘发友,周胜军.动态无功补偿技术的应用现状.电网技术,2004.28(23):81~83

高电压技术论文范文6

关键词:能源危机 发电效率 系统优化 大功率跟踪 高频逆变

中图分类号:TM615 文献标识码:A 文章编号:1672-3791(2013)01(b)-0123-01

1 光伏发电系统存在效率低的问题

光伏阵列和变换器为光伏系统两个重要部件,阵列输出与变换器效率对系统的整体效率有直接影响。光伏阵列成本较高,每100万平方米约需投入人民币5亿元,而目前市场上的光伏电池板的光电转换效率为11%~14%,且大多为非跟踪型,投入大、输出功率相对较低,和常规电能相比缺乏竞争力,限制光伏发电的普及应用。

2 通过光伏逆变器进行系统效率的优化

光伏逆变器转换效率的高低对光伏发电系统的整体效率有直接影响,为光伏系统的另一重要部件。目前的逆变器普遍采用低频逆变技术,属于工频变压器,体积和重量大、效率低、音频噪声大,不能实现小型化、轻量化和高效率化发展。

高频链逆变技术引起了光伏同行的研究兴趣,采用高频逆变技术,既可实现输入和输出的电气隔离,又可减小体积、重量,更为重要的是,减小了变压器上的系统损耗,变压器上的涡流损耗减小;高频变压器上所用的铁氧化体,为磁芯材料,铁损较低,利于降低涡流损耗,从而降低系统整体损耗。因此,若采用高频链逆变技术,可实现光伏系统整体效率的提高。

3 辐照度对光伏电池电气特性的影响

电池温度、日照强度和太阳光谱分布对光伏电池的输出功率有重大影响。辐照强度和温度可影响光伏阵列功率输出,在辐照度不变的情况下,短路电流和输出功率均会随环境温度变化,而开路电压、短路电流和最大输出功率受光照强度影响较大。因此,应把光伏系统安装在辐照度较强的地区,以确保光伏系统的最大功率输出。因此,可通过光伏整列的聚光装置,增大辐照强度,提高光伏阵列的功率输出。

4 通过最大功率点跟踪来实现系统效率的优化

光伏系统的输出特性是非线性的,受环境因素、辐照度和负载影响较大,即使在相同的辐照度和外界温度条件下,光伏阵列的电压输出也会不同,只有在某一输出电压值工作时,光伏阵列的输出功率才能达到最大值,为最大功率点。

因此,在光伏发电系统中,可通过实时调整光伏阵列的工作点,确保系统始终在最大功率点附近工作,光伏阵列可实时输出最大功率,该过程称作最大功率点跟踪,这样可提高系统的整体效率。

光伏阵列的输出特性曲线如图1所示,当工作电压小于最大功率点电压Um时,光伏阵列的输出功率随电压增大而增大;当工作电压大于最大功率点电压Um时,阵列的输出功率随端电压增大而减小。最大功率点跟踪是一个自寻优的过程,在各种不同的辐照度和温度环境下,通过调节光伏阵列的输出电压,实现最大功率点的智能化跟踪,保证光伏阵列的最大功率输出。

对光伏阵列而言,开路电压和短路电流在受太阳辐照度和环境温度影响较大,光伏系统的工作点也会受环境影响,如果外界环境发生变化,而光伏阵列工作点不能实时跟踪,就不能实现最大功率输出,从而导致系统整体效率降低。因此,最大功率跟踪控制,可实现光伏阵列在任何日照和温度,可持续获得最大的功率输出。

5 结论

光伏系统的总效率,与光伏电池板的光电转换效率有关,与逆变器的效率也有关,因此可以通过可选用适合的逆变器,可部分提高系统效率。本论文提出的最大效率跟踪技术,也是提高系统效率的重要方法。

在能源紧缺的大趋势下,清洁可再生能源的研究和开发受到国内外同行的广泛关注。光伏发电技术的快速发展与广泛应用,可在一定程度上缓解能源危机,部分解决环境恶化等问题。因此,光伏技术的研究和开发十分关键,尤其是光伏系统的整体效率提升,对光伏行业的发展具有重大意义。

参考文献

[1] 李俊峰,王斯成,张敏吉,等.中国光伏发展报告[R].北京:中国环境科学出版社,2007.

[2] 余世杰,战福忠,沈伟祥,等.光伏水泵系统的最大功率跟踪器[J].太阳能学报,1991,1(3):225-230.

[3] 马志保,孙佩石,苏建徽,等,太阳能高压钠灯高频电子镇流器的研究[J].电源技术应用,2005,20(5):72-74.

高电压技术论文范文7

[关键词]计算机技术,电压无功,自动化,应用

中图分类号:G623.58 文献标识码:A 文章编号:1009-914X(2014)45-0277-01

随着社会经济的飞速发展,居民和各类企业对供电质量和可靠性的要求日益提高,从改善电能质量和节约人力方面比较电压无功优化自动控制装置具有不可比拟的优势,已逐步取代原来通过值班员手动调节档位和投切电容器来调整电压的方式,在维系电力系统稳定中的作用已充分展示出来。论文参考,自动化。电压无功优化自动控制装置由大量的数据采集、数据计算、数据传输、数据控制、程序执行元件组成,通过一系列自动化技术将其功能整合在一起,因此,了解电压无功优化自动控制中的自动化原理对于研究电压无功优化自动控制有着十分重要的作用。为此本文着重分析了电压无功优化控制中的自动化技术。

一、自动控制系统的结构

(一)调压方式

无功优化控制系统设计在设置母线电压限定范围后,自动对高峰负荷时段、低谷负荷时段的电压值进行适当调整,以保证在合格范围内的电压满足逆调压方式。论文参考,自动化。当电压超出额定范围时,则与同级和上级变电所的电压进行比较,然后判断出应该调节同级还是上级变电所的主变档位。

(二)调整策略

电压无功优化自动控制包含两个方面,分别是电压优化和无功优化:

1、电压优化

当母线电压超上限时,首先下调主变的档位,当不能满足要求时才切除电容器;当母线电压超下限时,首先投入电容器,当不能满足要求时再上调主变档位,总之要确保电容器最合理的投入。

2、无功优化

当系统电压保持在限定范围内后,通过系统的自动控制,决定各级变电所电容器的先后投入,使得无功功率的流向最平衡,最能提高功率因数。

二、自动化数据采集、计算和传输

作为一个自动控制系统,全面的数据采集是整个控制过程最关键的一部,其采集数据的精度和安全直接影响整个系统的精度和安全。论文参考,自动化。一个完善的无功优化自动控制系统应该能实时自动的从调度中心、各监控站采集电网电压、功率、主变档位、电容器运行状态等数据并能确保当遥测遥信值不变时不与SCADA系统进行数据传输,减少系统资源占用。

在采集到实时数据后,过往的自动控制系统都是通过“专家系统”对数学模型进行简化和分解,然后利用潮流计算和专家系统等方法进行求解。随着自动化技术的高速发展,自动控制系统能够突破优化计算难于寻找工程解的难题,采用模糊控制的算法,充分考虑谐波,功率因数摆动,电压波动和事故闭锁等因素,通过一系列精密芯片的配合计算出使电网电能损耗最小的变压器档位、电容器投入量和电网最优运行电压以供控制部件执行。

系统在数据传输上使用只与内存交互数据而不存取硬盘的内存数据库技术,既提高了数据的存取速度,又节省了硬盘使用。为了提高传输效率,系统还会根据传输数据的类型和要求的不同,自动采用不同的传输协议:使用TCP/IP协议传输大量的重要数据,使用UDP协议传输少量的广播数据。在数据传输准确度方面,子站在接受到数据后会自动向主站发送反校信号,以验证所受数据的准确性。

三、系统的自动控制

电压无功优化控制的基本过程如下:首先是主站控制系统进行电压无功计算,然后把计算得到的各级变电所的功率因数、电压的区域无功定值结果通过光纤通道传达至各级变电所的电压无功控制系统。各级变电所的控制系统周期性的把本站的功率因数、电压和接收到的定值结果比较,以判断是否越限。

为了保证电网损耗最低,主站的控制系统要不断跟紧电网运行方式的变化,随时计算出最新的区域无功定值结果并传达至各级变电所的电压无功控制系统。由于主站的控制系统计算最初的区域无功定值时需要一定的时间,这就会造成各级变电所从启动控制系统至接收到第一个信号间有一个时间段,系统定义这段时间内的定值是按照本地系统运行的。论文参考,自动化。

当主站系统遇到特殊情况(如有影响电网拓扑结构的遥信变位发生)时,能够即时撤销子站控制系统当前正在执行的区域无功定值。子站控制系统即以本地无功定值运行,待再次受到主站重新计算的定值时才转以新定值运行。论文参考,自动化。子站控制系统实时监视主站的定值下传通道是否正常,通信异常时,立即改为执行本地定值,直至通道恢复正常。论文参考,自动化。

四、系统自动化的安全保证

目前国内的一些系统仅仅只做到了一层闭环控制,安全可靠性根本无法保证。而随着自动化技术的发展,最新的系统则是采用主站和子站同时的双层实时闭环反馈控制结构。实验证明由于采用了双层实时闭环反馈控制结构,当运行中发生用户定义的需要闭锁的异常事件时,控制系统能够立即执行闭锁,符合电网结构和调度运行特点,适合各种大小电网的安全可靠运行,能更有利地保证提高电网的电能质量,其具体的安全策略如下:

自动估算电网电压,使电容器平稳投切,避免出现振荡;自动估算电压调节后的无功变化量,使主变档位平稳调整,避免出现振荡。

当需要调节的变电所的主变并联运行时,为了避免出现其中一台主变频繁调节的情况,首先调节据动率较高的那台主变的档位。应对于主变和电容器出现的异常情况,系统能够自动减少主变档位调整次数,使设备寿命增加,电网安全得到保证。当遭遇设备异常时,系统自动闭锁,而且必须人工手动来解除封锁。具体的异常情况有:电容器或主变档位异常变位;系统需要采集的数据异常;系统数据不刷新。特别的当发生10kV单相接地时,系统自动闭锁电容器的投切。为避免采集到的数据不准确,系统采用同时判断遥测数据和遥信数据的方式,提高了采集数据的准度。

五、结论

本文通过对电压无功优化控制系统的浅要介绍,分析了其包含的自动化技术,从一个侧面反映了我国电力系统自动化科技的发展,也展现了电力行业专业人才的卓越才能。本文对电压无功优化控制系统从设计思想,系统构成方面进行的论述,可作电力专业的教辅材料,也可供电压无功优化控制装置设计和运行参考。

高电压技术论文范文8

理论联系实际,在实践工作中检验理论、提升理论,是企业对毕业生的要求。理论指导实践,在实践工作中运用科学的理论指导实践,是企业对工程技术人员的要求。作者曾在电力系统就职,体会比较深刻。对于变电站而言变压器检修经常要做空载和短路试验,工程上变压器空载试验方法采用调压器在低压侧加压,空载容量应小于调压器容量的50%,试验电流为额定电流的1‰~1%,以测量变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。变压器短路试验用自耦变压器调节原边电压,原边电流达到额定值时,测量变压器铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%。通过亲自动手做压器空载、短路试验及观察实验现象,联系《电路》、《电机学》中关于变压器的相关知识,加深了对变压器的学习与理解。发电厂自动化控制是电力系统的发展趋势与要求,已投产和在建的大型发电厂的自动化控制水平非常高,已达到“无人值守,少人值班”管理模式。发电机组的自动开停机、自动同期并网技术验证了《自动控制理论》、《继电保护》等相关理论知识。在电力系统工作的4年中,笔者的理论知识在工作实践中不断得到深化和提升。

二电力系统工作经历对电气工程本科教学起到的积极作用

1教材选用目的更加明确

教材是高校实施培养计划的重要介质,直接影响着教学质量和人才。高质量、合理化的教材是提高教学质量与水平、完成人才培养计划与目标的保证。作者在施教时参照自身的工作经验,选用更具有方向性与实践性的教材,提高毕业生与企业之间的契合度。智能电网、数字化电站是电力系统的发展趋势,其要求电网信息化、自动化程度更高。因为这一目的,可编程控制器(ProgrammableLogicController,PLC)被广泛应用到电力系统中,目前国内应用的PLC有西门子(SIEMENS)公司生产的S7系列、施耐德公司生产的Quantum等系列、三菱公司生产的FX3G系列等。随着日系PLC退出中国市场,西门子PLC被普遍应用于电力系统自动化控制。例如三峡电厂、葛洲坝电厂、溪洛渡电厂等大型水电站使用PLC对发电机组、辅助设备系统等设备进行控制。因此在向电气工程与自动化专业教授《电器与可编程控制器》这门课程时,应该选用以西门子PLC为基础讲述电厂及电网自动化控制的教材,教学内容更接近电力系统工作实践,使电气工程及自动化专业毕业生在走上工作岗位时具有更强的适应能力。

2培养学生更具有方向性

现代电力企业对高校毕业生有着严格的职业要求。扎实的专业能力、较强的实践动手能力以及必要的公文写作能力是毕业生就职于电力企业所必须具有的素质。电力系统设备分为一次设备、二次设备两大类。就发电厂而言,从事电气一次设备的检修、维护及管理工作需要毕业生熟练掌握《发电厂电气主系统》、《电力系统继电保护》、《电机学》等专业课程的内容,熟悉电机、开关电器、载流导体、电抗器、补偿设备、避雷器、继电保护系统相关知识,这些是为适应发电厂工作而储备的理论知识。从事电气二次系统工作的毕业生则必须重点掌握《自动控制理论》、《电力系统继电保护》、《电子技术》、《电器与可编程控制器》的相应内容。因此拥有扎实、丰富的专业知识来服务电力企业,是电气工程及自动化专业的培养目标。实践动手能力在促使毕业生快速融入到企业生产工作中扮演着积极、重要的作用。发电厂电气设备维修工作需要毕业生有较强的电气二次配线、布线及PLC编程能力。发电厂中大量布置电气二次控制盘柜,实际的检修与维护工作需要高强度的控制回路布线与配线工作,电力系统高度自动化则需要毕业生具备基于PLC的自动化程序读写能力。公文写作能力是现代化大型企业对职工的基本要求。我国各级电力系统的运营、管理、维护已经实现了规范化、制度化、标准化。实际的工作中需要职工撰写大量的公文,例如对发电厂而言,每个月要写电厂运营报告、机组检修报告、技术改造方案等,特别是实行工作票制度后,每天都要写设备缺陷处理报告及巡检报告。这些工作要求职工具有一定的公文写作能力。对于毕业生而言,必要的公文写作能力在求职及就职中有着不可替代的优越性。

3将工作经验融入教学

将宝贵的工作经历融于课堂教学,可极大地丰富教学内容,提高学生的学习兴趣。作者讲述《电路》第十一章时,结合自己的工作经历深入浅出地讲述了变压器的原理、空载和短路实验,使学生更好地理解和掌握课堂内容。在讲述《电器与可编程控制器》时,以发电厂开停机控制流程、辅助设备自动化控制流程为例,将专业课程学习与电厂实际工作紧密结合起来,以培养更适合企业要求的应用型人才。

4将企业中应用的前沿技术

带进课堂随着数字化电站、智能电网的建设,大型发电机组实现并网发电,状态检测技术投入使用,开始对1000KV特高压技术进行实验研究。电力系统的发展日新月异,设备更新速度非常快。电气工程自动化专业的教学应当将当前电力系统的先进技术、发展趋势带进课堂,在丰富教学内容的同时,增加学生对前沿技术的求知兴趣。笔者从事过175MW、770MW水电机组的自动化控制系统改造及维修工作,巨型水电厂厂用电系统运行及维护工作,水电机组状态检测与故障诊断系统的组建与维护工作。其中770MW发电机组自动化控制技术、巨型水电组状态检测与故障诊断技术都是当前电力系统的前沿技术。将这些知识带进课堂,有利于学生充分认识本专业的发展动向与趋势,积极地规划自己的职业发展方向。

三结语

高电压技术论文范文9

文中针对二极管伏安特性曲线的测试探讨了以下技术内容:伏安法测试技术、补偿法测试技术、等效法测试技术和示波器法测试技术,这一研究对于二极管稳定性探讨具有一定的参考价值。

【关键词】二极管 伏安特性 曲线测试 示波器法

二极管作为电路中的基本元件,其开启电压是一个重要参数,可通过测试二极管伏安特性曲线可以得到开启电压。通常二极管伏安特性曲线的测试技术有伏安法、补偿法、等效法等。本文基于这一背景,对二极管伏安特性曲线测试技术进行了探讨,这一研究对于二极管稳定性探讨具有一定的参考价值。

1 二极管伏安特性曲线的测试技术

1.1 伏安法测试技术

通过V、I得到的伏安特性曲线电流等于电压表电流加上二极管电流,很明显并非二极管的伏安特性曲线,因此,在理论上,采取该方法得到的测量结果有一定的误差。在低电压测量过程中,二极管具有较大的内阻,存在很大的误差,二极管的内阻和误差会随着测量点电压的上升而减小;在二极管正向伏安曲线的测量过程中,因为二极管正向内阻比较低,采取这个方法可将误差控制在较低范围内。

这个方法作曲线用的电压值等于二极管电压加上电流表电压,在理论上存在一定的误差,在测量时,二极管的等效内阻RD与电压U成反比,电流表影响较大,误差随着U的上升而变大;小量程电流表具有较大的内阻RA,误差也比较大。然而这种方法在二极管反向伏安特性曲线的测量过程中,因为二极管具有较大的反向内阻,因此,误差相对较小。

因为在伏安法的测试下,不是测量的电压值不对,就是电流值不对,在理论上,总有一定的误差,测量结果并不是很详细,但这个方法下的电路比较简单,且便于操作。

1.2 补偿法测试技术

图2为补偿法测量的基本原理示意图。工作原理:如果两个直流电源的同极相连,且两者的电动势也正好一样,即UBC等于UBA,回路中没有电流流过检流计G,显示为零,这个时候电流表A的显示值等于流过二极管的电流,电压表的显示值等于二极管两端电压,通过这两个值作V-I曲线,则理论误差就消除了。

补偿法测量不存在理论误差,实验过程中所存在的误差主要包括以下几种:仪器的精度、测量误差、视觉误差以及失误等。这个方法具有很高的测量精度,不足的是电路较为复杂,不便于操作。

2 对比测试分析

对比测试方法可知:在测量过程中,伏安法下的电路最简单,且便于操作,不足的是误差很大;补偿法与等效法下的结果具有较高的精度,不足的是电路较复杂,相比之下,补偿法的操作要难一点;示波器法相对来说较为直观,在演示教学中比较适用,由于一般的测量对精度的要求比较高,故补偿法与等效法比较适用;而示波器法比较适用于对曲线的观察。

参考文献

[1]王春会,佟瑞栋.介绍测二极管伏安特性的几种方法[J].辽宁师专学报(自然科学版),2006,03:8-9+16.

[2]李正良,魏晋忠,李一凡,甘启宙.二级管伏安特性实验的教学优化设计[J].广西科学院学报,2008,04:376-379.

[3]连汉丽.二极管伏安特性曲线的理论分析[J].西安邮电学院学报,2008,05:150-152.

[4]黄贤群.用电位差计测二极管伏安特性曲线[J].内江科技,2009,02:100.

[5]邵建新.二极管伏安特性曲线测试电路的改进[J].物理实验,2002,03:42-43.

精品推荐