HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

纳米技术论文集锦9篇

时间:2023-03-22 17:34:20

纳米技术论文

纳米技术论文范文1

1微乳反应器原理

在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。

W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。

(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。

(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。

(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。

2微乳反应器的形成及结构

和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可以作为纳米粒子制备的反应器。但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。

2.1微乳液的形成机理

Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:

--dγ=∑Гidui=∑ГiRTdlnCi

(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)

上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。

2.2微乳液的结构

RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。

目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。

3微乳反应器的应用――纳米颗粒材料的制备

3.1纳米催化材料的制备

利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备

Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为0.5mol/L,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。

3.2无机化合物纳粒的制备

利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。

又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。

3.3聚合物纳粒的制备

利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt――正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。

3.4金属单质和合金的制备

利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n―heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有0.2mol/LNaBH4,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。

3.5磁性氧化物颗粒的制备

利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。

3.6高温超导体的制备

利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu―O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu―O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。

目前对纳米颗粒材料的研究方法比较多,较直接的方法有电镜观测(SEM、TEM、STEM、STM等);间接的方法有电子、X一射线衍射法(XRD),中子衍射,光谱方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,红外光谱,拉曼光谱,紫外一可见分光光度法(UV-VIS),荧光光谱及正电子湮没,动态激光光散射(DLS)等。

纳米技术论文范文2

1.1纳米技术产业化存在的四大不足

1.1.1系统性产业支持政策、激励措施不足

目前,我国纳米技术产业化发展初现“南有苏州、北有天津”的局面,在培育产业实体、强化平台建设、聚集创新人才等方面,需出台更具竞争力的系统性政策鼓励、引导。如果不加快推进相关工作,将难以吸引更多优秀的纳米企业落户,痛失黄金发展期,产业化进程放慢。同时,纳米产业的发展缺乏相应的激励措施。高科技产业是知识与技术的高度结合,技术难度大,智力要求高,其渗透性和竞争性强,投资风险大。高科技产业激励机制的完善离不开政府的支持,有效的激励政策可以优化企业的投资行为,进而带动产业的良性发展。

1.1.2产业规划不足和缺乏持续投入

财政专项支持及持续投入缺乏,导致纳米技术产业化进展缓慢。以苏州为例,工业园区管委会连续4年投入20亿元,预计2015年纳米产值规模超过200亿元,带动相关产业1,000亿元。国家纳米技术与工程研究院“十二五”期间被列入我国重点研发平台体系,拥有科技部认定国家纳米高新技术产业化基地,拥有国内唯一一家纳米产品质量监督检验中心。2012年,经天津市领导及相关部门的大力争取,天津滨海新区与苏州工业园区同时被财政部拟定为全国纳米产业政策试点区域。创新集成研发和产业转化平台已落户上述两地,借助产业试点政策的国家战略布局先机,应在推进纳米产业化方面出台相应的产业规划、纳米技术科研成果转化及产业化方面的专项支持,持续推动纳米技术产业转化相关平台的建设、运转和后续资金支持,从财政、金融、产业政策法规完善上给予企业足够的激励,鼓励从事纳米产业,为产学研的深度融合提供有利的环境。

1.1.3产学研深层次合作不足

目前,我国纳米技术研发人员、纳米技术专利、从事纳米技术生产的企业数目均已过万,纳米技术产业化已成为京津冀地区、沿海发达地区及省会城市高度关注的战略性新兴产业。但是产学研合作水平层次较低,合作的方式主要以委托研发、技术转让等低层次合作为主,重大项目联合攻关等合作方式相对偏少。缺乏助推协同创新的载体,尚未拥有集科研人才、专业设备、高精尖技术及产业化项目信息等多种资源于一体的开放式创新平台。缺乏产学研深层次合作,造成纳米技术研究与市场的脱节,技术成果转化困难,严重影响纳米技术的产业转化。如何采用创新模式来解决纳米企业发展的核心技术问题和产业发展的共性技术难点,运用市场机制集聚创新资源,实现企业、大学和科研机构的深层次结合,对接双创特区建设,形成技术标准体系,支撑和引领产业创新,将是创新发展路径设计要考虑的重要因素。

1.1.4纳米行业技术规范不足和行业协会缺失

低水平“科技成果”过剩,浪费了社会整体资源,更阻碍了纳米技术产业化的进程。目前尚未成立部级的纳米技术产业化协会,在落实纳米技术产业化创新发展过程中,要遵守国家的法律法规和纳米技术产业化发展政策要求,参照国际标准和准则以及行业特点,研究并提出具体实施措施、行业规范和办法,规范会员的行为,认识“伪纳米”现象,打击行业的不正之风,联建纳米科技服务创新平台,组织参与国内外科研学术交流、工艺装备展示等重大活动。科学分析纳米技术产业化发展过程中的各种问题,把握好产业发展的规律,充分发挥政府引导、科技支撑和市场推动的共同作用,打通纳米技术产业化发展各个环节间的障碍,持之以恒地促进纳米技术产业化发展。

2纳米技术产业化创新发展的路径选择

纳米技术产业化创新发展不仅要从宏观上考虑国内外经济、科技等的形势发展,更要从内在创新要素进行顶层设计、系统集成,不断实践、不断探索深层次创新发展模式和路径。

2.1探寻深层次产学研合作——动态联盟、联合攻关

纳米技术产业化创新发展实行动态联盟、联合攻关策略,汇集中央和地方的力量,各地大学、研究院所力量,企业力量,甚至国际力量共同担任研究任务,更有效地推动我国纳米技术产业化发展。在传统的产学研相结合的基础上,迫切需要加强深层次、实质性和运行机制上的合作,引导优势科技资源向企业聚集,鼓励在纳米技术方面成熟的国内外高校、院所在企业中建设重点纳米技术实验室,或者企业在这些机构中设置相关实验室,探索动态联盟、联合攻关机制,实现强强联合。

2.2创新人才驱动与纳米产业战略联盟联动方案

通过实施“领军人才-企业战略联盟产业技术创新”联动方案,完善纳米产业战略发展体系。一方面注重科技领军人才的培养和引进,把引进和培养纳米技术的科技领军人才和实用型人才作为纳米技术产业化创新发展的重要内容之一,充分发挥领军人才专家“人才库”、“智囊团”、“攻关组”作用,结合实际,立足于解决问题、促进发展。另一方面组织联盟的纳米企业开展重大项目和重点技术的联合攻关,通过联盟内部和联盟之间设立“联盟专利池”,合作创新申请国际发明专利、新技术新产品标准,实现知识产权共享共建。通过合作创新获得国家和地方科研项目立项,以联盟为载体促进创新成果扩散。实现信息、数据和资料的共享,在确保整体利益的前提下,追求利益最大化。通过联动方案最终实现加速研究成果共享与转化,实现在技术创新、高端人才资源和科技服务3个层面的突破,攻关产业发展的重大技术难题,加速科技创新人才培养,加强科技交流与服务,推动产学研结合、协同创新和科技成果转移转化向更高层次发展。

2.3创新“六位一体”高速发展模式,促进纳米产业蛙跳

在纳米技术产业化过程中,条件成熟的实验室等创新载体可以选择面向社会开放运行,引导纳米创新平台向企业聚集、为企业服务。继续出台政策,支持民间资本进入纳米产业,以缓解纳米行业新兴企业的资金短缺问题,充分考虑到纳米产业发展周期较长的特点,在继续加强政府投入的同时,借鉴国外对高新技术进行风险投资的成功经验,引入风险投资,设立纳米技术产业化投资基金,为新创的、有潜力的纳米企业提供资金来源,实现国家资本和民间资本的对接,激励民间资本进入新兴的纳米行业,提高纳米科研技术从理论转化为应用的速度,加快纳米技术产业化的进程。逐步形成纳米技术标准检测服务平台、技术与工程应用转化、纳米技术产业转化、纳米技术产业化投资基金、国家纳米产业试点政策、中国纳米技术产业协会相互支撑,高速发展的“六位一体”综合产业促进体系,着力打造综合创新平台,构筑人才、技术、资金、信息的科技创新和产融结合为特征的“六位一体”综合产业促进体系,加速培育纳米中小企业,促进纳米技术产业的“蛙跳”。

3结语

纳米技术论文范文3

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

纳米技术论文范文4

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,PurdueUniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。

简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

1952年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(UT)和历书时(ET)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10-9。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133Cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10-12—10-14量级,即30万年——300万年差1秒)。1967年第13届国际计量大会正式通过决议,规定:“一秒等于133Cs原子基态两超精细能级跃迁的9192631770个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。

总之,在探讨了近似计算在静态分析中的应用问题、纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册后,广大科技工作者对电子技术在时间与频率标准中的应用知识的初步了解和认识。在当代高科技产业日渐繁荣,尖端信息普遍进入我们生活之中的同时,国家经济建设和和谐社会的构建离不开我们科技工作者对新理论的学习和新技术的应用,因此说,本文具有深刻的理论意义和广泛的实际应用价值是不足为虚的。

【参考文献】

[1]张凡,殷承良《现代汽车电子技术及其在仪表中的应用[J]客车技术与研究》,2006(01)。

[2]李建《汽车电子技术的应用状况与发展趋势》[J],《汽车运用》,2006(09)。

[3]陶琦《国际汽车电子技术纵览》[J],《电子设计应用》,2005(05)。

[4]刘艳梅《电子技术在现代汽车上的发展与应用》[J],《中国科技信息》,2006(01)。

[5]魏万云《浅谈当代电子技术的发展》[J],《中国科技信息》,2005(19)。

[6]黄军辉,张南峰,管卫华《创办汽车电子技术专业——适应现代汽车技术的发展之路》[J],《广东农工商职业技术学院学报》,2006(01)。

[7]巨永锋《汽车电子技术的发展趋势》[J],《现代电子技术》,2003(09)。

纳米技术论文范文5

关键词 纳米科技;纳米地球化学;纳米矿物学;纳米矿床学

中图分类号TB383 文献标识码A 文章编号 1674-6708(2010)31-0083-02

1 概述

纳米科学技术(nano scale science and technology)作为新兴的学科[1],在人类社会进入世纪之交的关键转变年代,在世界范围兴起,发展迅速,前景诱人,国际竞争已经开始。人类对自然世界的认识始于宏观物体,又逐渐认识到原子,分子等微观粒子,然而对纳米微粒却缺乏深入的研究[2]。原子是自然界的基本组成单元,原子的不同排列方式使自然界物种丰富多样化。1959年,著名的物理学家诺贝尔物理学奖得主查德・费曼说:“如果有一天可以按人的意志安排一个原子,将会产生怎样的奇迹。”纳米科技则使人们能够直接利用原子、分子制备出包含原子的纳米微粒,并把它作为基本构成单元,适当排列成一维的量子线,二维的量子面,三维的纳米固体。纳米材料有一般固体都不具备的优良特性,所以有着广阔的应用前景。钱学森指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。” [3]

1.1 基本概念

纳米(Nanometer)又称毫微米,是一种长度单位。1纳米等于10-9m(十亿分之一米)。上田良二教授于1984年从测试的角度给纳米微粒下了一个定义:用电子显微镜(TEM)能看到的微粒称为纳米微粒[4]。纳米技术是1974年在东京由日本精密工程学会(JSPE)和国际生产工程研究学会(CIRP)联合主持的会议上由日本东京科学大学机械工程教授谷口纪男提出的[5]。纳米科技(Nanost)是一门在0.1nm~100nm范围内对物质和生命进行研究应用的科学。这是一种介观区域(宏观和微观之间的连接区域)进行开发研究的新技术。它使人类认识和改造物质世界的手段和能力延伸到分子和原子。纳米科技涉及到物理学、数学、化学、生物学、机械学、信息科学、材料科学、微电子学等众多学科以及计算机技术,电真空技术,扫描隧道显微镜及加工技术,等离子体技术和核分析等各种技术领域,是一门综合性的新兴科学技术。

1.2 纳米科技的发展历史

纳米科技是20世纪科技领域重要突破它的发展经历了孕育萌芽阶段,探索研究阶段和应用开发阶段3个时期。

1)孕育萌芽阶段。费曼设想在原子和分子水平上操纵和控制物质。1860年,胶体化学诞生之日,对粒径约(1~100)nm的胶体粒子开始研究,但由于受研究手段限制,发展缓慢;

2)探索研究阶段。30年后,1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩召开,同年《纳米生物学》和《纳米科技》专业刊物相继问世。这标志着一门崭新的科学技术-纳米科学技术,在经过30年的曲折道路,终于诞生了。费曼的美妙设想成为现实了[6];

(3)应用阶段。1993年,开始进入蓬勃的发展时期,20世纪末获得许多成果,达到预期目标可能还要经历10~20年的努力。

1.3 纳米固体的基本特征

纳米固体的重要特征,决定了纳米科技具有划时代意义。这些特性有如下4个方面[6] :

1)表面与界面效应。纳米微粒尺寸小,表面积大,所以位于表面的原子比例相对增多。尺寸与表面原子数的关系见表1。当物质粒径小于10nm,将迅速增加表面原子的比例,当粒径降到1nm时,原子几乎全部集中到纳米粒子的表面。由于表面原子数增多,使得这些原子易与其它原子相结合而稳定,具有很高化学活性,表面吸附能力强,扩散系数增大,塑性和韧性都大大提高;

表1纳米微粒尺寸与表面原子数的关系

2)小尺寸效应。当纳米微粒的尺寸与光波的波长相当或更小时,周期性的边界条件将被破坏,电,光,磁,声,热力学等特征均会出现小尺寸效应;

3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。宏观量子隧道效应的研究对基础研究及应用都有重要的意义;

4)量子尺寸效应。量子尺寸效应是指当粒子尺寸下降到最低值时,费米能级附近的电子能级变为离散能级的现象。而当颗粒中所含原子数随着尺寸减小而降低时,费米能级附近的电子能级将由准连续态分裂为分立能级。当能级间距大于静磁能,磁能,热能,静电能,超导态或光子能量的凝聚能时,就导致纳米微粒磁,热,声,光,电以及超导电性与宏观特征显著不同,称为“量子尺寸效应”。例如导电的金属在超细微粒时可以是绝缘的。

表面界面效应,小尺寸效应,宏观量子隧道效应和量子尺寸效应是纳米微粒与纳米固体的基本特征,它使纳米微粒和纳米固体呈现出许多不同的物化性质。

2 纳米科学研究的分析手段

具有原子分辨率的扫描隧道显微镜(STM),高分辨透射电镜(HRTEM),和原子力显微镜(AFM)等手段[7-9]能直接观察出纳米固体,纳米微粒,和纳米结构特征。

1)扫描隧道显微镜(STM)

扫描隧道显微镜(STM)具有原子级的空间分辨率。主要描绘表面三维的原子结构图。主要用于导电纳米矿物原子级的空间分辨率研究 ,如金属硫化物研究。

2)高分辩透射电镜(HRTEM)

高分辩透射电镜(HRTEM)空间分辨率可达0.1nm~0.2nm。主要用于各种矿物纳米级的成分,形貌,结构的综合研究。如金属硫化物,硅酸盐矿物,矿物中的出溶物以及胶体矿物研究。

3)原子力显微镜(AFM)

以扫描隧道显微镜(STM)为基础发展起来的原子力显微镜(AFM)

能探测针尖和样品之间的相互作用力,达到纳米级的空间分辨率。为了获得绝缘材料原子图像,又出现了原子力显微镜。AFM主要是用于非导电纳米矿物原子级的空间分辨率研究。如硅酸盐矿物,胶体矿物等研究。在纳米材料方面主要是观察纳米材料物质等在矿物物质表面的吸附和沉积,以及天然纳米微粒形状。

3 纳米科技理论在地学上的应用

纳米科技与地学的结合形成了以下3种学科纳米地球化学,纳米矿床学和纳米矿物学。

3.1纳米地球化学

纳米地球化学就是研究地球中纳米微粒分布,分配,集中,分散,迁移规律,以及由纳米微粒的分布及组合特征反映断裂活动,探测石油,天然气,金属矿床等。纳米物质使元素具有新的地球化学活性和新的成岩成矿模式:传统观念认为,温度越高,化学活性越大,元素的迁移能力越强,反之活性就越小,越不容易迁移。为此,作为化学性质很不活泼的金,在较低温度下,理应活性很小,溶解度偏低,很难迁移成矿。事实上却与纳米金的地球化学行为相矛盾。但如果从纳米科技理论的角度考虑,就不难理解了。纳米科技理论认为,当物质的粒度达到纳米级时,由于颗粒极其细小,表面积很大,例如SiO2,其粒径从36nm减少到7nm时,其比表面积由75增加到360m2/g[10]。巨大的表面积使大量的原子处在表面,使元素的化学反应速度和扩散速度增加很多,吸附能力增强,熔点变低,物化性质发生改变。成岩成矿温度低,因而使元素具有低温活性。粒度越小,活性越大。这使纳米级的物质具有成分相同的可见颗粒所没有的特性。产生新的地球化学活性和新的成岩成矿模式。对稀有元素,活性性质不活泼的元素,分散元素和在水中溶解度极低的元素,在低温条件下成岩成矿作用有了不同的解释思路。

3.2 纳米矿床学

相同成分的纳米微粒不同的物化性特性已使地质学家对矿床学理论中有关矿质运移,富集过程有了新的认识。传统理论认为,矿物质的运移以温差,压力差或浓度差为前提条件,而对矿物质的运移和富集又限定其必须有一定的矿化剂为载体,而未意识到同种物质如果其粒度不同则其物化性质的差别非常巨大。传统成矿理论一直认为金矿的形成是由于其离子与一定络合剂结合,在一定的温度条件下迁移到一定部位,经过各种化学反应生成自然金而聚集成矿。纳米科学技术理论认为:源岩中的原子态金只要达到纳米级,其本身首先就由于极大的自扩散系数和吸附性而扩散,迁移合富集成矿。目前为止,地学界一直对砂金为何能在低温条件下甚至使常温态下能够形成“狗头金”的事实没有定论,现在看来,很有可能是纳米级的金自身扩散,迁移,吸附的结果。这种聚集成矿作用,在内生金属成矿作用过程中可能也同样起着不可低估的作用[11]。

3.3 纳米矿物学

目前,由于科技的限制,人类对矿物学的认识,往往注重宏观矿物单体,聚合体的形态及有关特性,注重微观矿物成分及原子排列的情况,而对纳米矿物微粒,纳米矿物结构缺乏深入细致的研究。在传统矿物学研究中,把矿物看成理想的晶体点阵,但在纳米矿物学中则着重研究纳米矿物微粒和矿物结构特征以及与此有关的岩石学,矿床学,构造地质学,地球化学等地质学科。

所谓的纳米矿物就是指晶体粒度细小至纳米量级的矿物颗粒。往往是以集合体形式结合一起[12]。彭同红、万朴等人运用扫描电镜发现以下几种非金属矿晶体,具有纳米尺寸的结构:

1)沸石, 其内通道直径为13nm~113nm;

2)条纹长石、月光石、日光石,其晶间距为2nm;

3)膨润土、高岭土、海泡石,其层间距离为2nm等;

4)鳞片石墨经高温膨化后形成蠕虫石墨,形成网状结构,其孔径直径为10 nm~100nm[13]。

目前,已发现的纳米矿物资源主要分布在大洋底部及陆地。例如:海洋中的“黑烟囱”和陆地上的纳米矿物有氧化物和硅酸盐等。但受限于开采技术,目前仅其中层状结构的黏土矿物并已初步进行开发利用。纳米物质的巨大的比表面积、特殊的界面效应、临界尺寸效应及高能量状态赋其不同于普通物质的特性。例如, 普通金的沸点为2 966℃,而纳米相金则在700℃~800℃条件下熔解、气化[12]。其它纳米相金属也具有此特性。因而纳米级矿物开发利用有着广阔的应用前景。

4 结论

纳米科技的研究是国际当前的研究热点,它使人类在改造自然方面进入了一个新层次,即从微米级层次深入到纳米级层次。也使地质学科学家的认识改造自然界进入一个新层次。HRTEM,STM,AFM等测试方法的在纳米矿物学中的研究运用,一些新概念、新理论、新方法随之孕育而生,使21世纪矿物学的研究将上一个新台阶,这将促进地质科学飞速发展。

参考文献

[1]林鸿溢.北京理工大学学报,14.

[2]葛庭燧.纳米材料的结构与性能科学,1990(3).

[3]陈敬中.纳米科技的发展与纳米矿物学研究[J].地质科技情报,1994,13(2).

[4]嵇钧生.纳米技术的科技发展及趋势.

[5]刘芝.正在崛起的纳米科技[J].中国青年科技,1994(5).

[6]张立德.跨世纪的新领域:纳米材料科学[J].科学,1993(1).

[7]王大文,白春礼.扫描隧道显微术在纳米科学技术中的应用[J].科技导报,1992(4).

[8]Wickramasinghe HK.扫描探针显微镜,1991(4).

[9]林海安,郑茫,王林,等.扫描探针电子学[J].大自然探索,1993(3).

[10]姜泽春.地学领域里的纳米科学问题[J].矿物岩石地球化学通报,1995(4).

[11]银剑钊.纳米矿床学地学前缘,1994,1.

[12]李辉.西北地质,2001(2).

[13]周明芳.纳米矿物材料的开发现状及存在的主要问题[J].矿产与地质,2002,16(2).

[14]李斗星,平德海,戴吉岩,等.材料界面的特征和表征[J].稀有金属,1994(4).

[15]刘曙光.非金属矿纳米结构特征及应用[J].矿产综合利用,2002(4).

[16]曹建劲,梁致荣,刘可星,等.红层风化壳对地气纳米金微粒吸附的模拟实验研究[J].自然科学进展,2004(14).

[17]朱笑青,章振根.矿物、岩石对纳米金吸附作用的实验研究[J].矿产与地质,1996(2).

纳米技术论文范文6

关键词:纳米技术,非致命武器,纳米武器

 

1.引言

当前,一场新的纳米技术革命正在悄然兴起。美国兰德公司认为,纳米技术将是“未来驱动军事作战领域革命”的关键技术,具有明显的军事应用潜力。纳米技术可实现非致命武器系统超微型化,使目前车载、机载的电子战系统浓缩至可单兵携带、隐蔽性更好、安全性更高的系统;纳米技术可实现非致命武器系统高智能化,使武器装备控制系统对信息获取的速度大大加快,射击精度大大提高;纳米技术可实现非致命武器系统高集成化,使武器装备成本降低、可靠性提高,同时使非致命武器装备研制、生产周期缩短。纳米技术作为可以大幅度提高未来武器装备性能的先进科学技术而倍受世人的广泛关注。

2.纳米技术的科学内涵

纳米是一种度量单位,一纳米为百万分之一毫米,即十亿分之一米。一纳米相当于数个原子的并列长度。纳米结构通常是指尺寸在100纳米以下的微小结构,在这种水平上对物质和材料进行操作、控制和加工的技术称为纳米技术。纳米技术以空前的分辨率为人类揭示了一个可见的原子、分子世界,它的最终目标是直接以原子和分子来构造具有特定功能的产品。纳米科学就是研究在这极其微小的范围内的原子、分子和其他类型物质的运动和变化的科学。几十个原子、分子或成千个原子和分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于宏观物质的性质。

3.纳米技术对非致命性武器性能影响的研究

(1)改变非致命武器的材料性能

纳米材料是指微观结构至少在一维方向上受纳米尺度 (1nm~100nm) 调制的各种固体超细材料。纳米材料有4个基本效应,即小尺寸效应、量子尺寸效应、表面与界面效应、宏观量子隧道效应,由于这些效应,纳米材料具有常规材料所没有的特别性能,如高强度和高韧性、高热膨胀系数、高比热和低熔点、奇特的磁性、极强的吸波性,可以在光电器件、灵敏传感器、隐身技术、催化、信息存储等领域得到广泛的应用。纳米材料的应用,可以增强非致命武器装备的耐腐蚀性、吸波性和隐蔽性。

目前装备的非致命武器,虽然部分使用了复合材料,但防暴枪械的金属机件的枪管、机匣、枪机、击发机构等仍占非致命武器的绝大部分质量,而如果把金属纳米颗粒粉体物质制作成块状金属材料,则会使其变得十分结实,强度比一般的金属高十几倍,同时又可以像橡胶一样富有弹性。论文格式。如果使用这种材料制造非致命武器的金属机件,会使它们的质量减少到原来的1/10。可以想象一支防暴枪的质量只有0.3kg左右。车载榴弹发射器也只有2kg左右,根本无需车载。利用纳米金属材料完全可以制造出坚固耐用、质量小,战斗性能好的新一代非致命武器。

运用纳米技术开发的润滑剂,能在物体表面形成半永久性的固态膜,产生极好的润滑作用,将其应用于超级润滑剂,可有效的阻止飞机起降和列车、军车行进。除此之外,纳米润滑剂既能大大降低防暴车等主机工作时的噪声,又能延长非致命武器装备的使用寿命。

(2)提高非致命武器的攻击性能

运用纳米技术在产品中添加特殊性能的材料,或在产品表面形成一层特殊的材料,能产生出新的性能。现在已经制造出来的碳纳米管,硬度大约是钢的100倍。现装备的防暴枪械初速较低,如动能霰弹弹丸初速仅315m/s,催泪弹弹丸初速仅为65m/s,射程较近(小于150m)。可以想象,把纳米技术用于非致命武器制造,可解决非致命性弹药的弹头初速低的问题,要想提高防暴枪械的初速,目前的方法只有增加发射药量,但这势必会增加武器及弹药的质量,与当前武器轻型化的发展趋势是背道而驰的,如果枪弹的发射药采用纳米颗粒,那么枪弹的质量不但会大幅度减小,而且弹头的初速也会大幅度提高,同时单兵的携带量也将大幅度增加。

用纳米物质作发射药,还可以从根本上改变现有防暴枪械的发射机构。由于纳米发射药遇到空气就会反应,所以新的击发机构实际上就是一个控制发射弹药与空气接触的机构。纳米物质所做的发射药点火原理不同,可以想象在纳米技术不断发展的前提下,非常有可能制造出发射机理与现在所使用的防暴枪械完全不同的发射机构,使得防暴枪械变得更小、更轻、射击精度更高。

(3)改善非致命性弹药的各种性能

纳米颗粒可以大大提高非致命性弹药的推进剂和炸药的燃烧效率。纳米颗粒粒径小、比表面积大、表面原子多而具有体积效应和表面效应等,使其催化、吸附等物化性能比普通级材料更加优异。表面有效反应中心多,催化作用明显高于常用催化剂。论文格式。在非致命性弹药燃料中,加入镍纳米微粒作催化剂,燃烧效率提高100倍。论文格式。金属纳米微粒能位高,化学活性极强,在空气中会迅速氧化燃烧甚至发生爆炸。在高能量密度材料中加入纳米金属微粒(加纳米铝粉)制成的纳米炸药,能够超高速燃烧,迅速释放能量,性能提高数十至上百倍。将纳米颗粒应用于发烟弹的发烟剂中,是发烟剂点火容易,起烟速度快,发烟量大。纳米固色剂还可以提高染色弹的着色能力。

4.结束语

世界格局内纳米科技日新月异的发展对我们提出了严峻的挑战。纳米技术在非致命武器领域的应用有着广阔的前景,它将导致非致命武器装备变革,进而引发新的非致命技术革命。在一些发达国家,军方对纳米技术的投入和研究成果已经超过了其他领域。相对其他学科,我国对纳米技术的研究起步并不晚,迄今为止也投入了相当力量,但是对纳米技术在非致命武器上的应用研究还十分薄弱。我们应该把纳米技术在非致命领域的应用研究放在战略高度,把握契机,发挥特长,争取掌握高超的制敌之术,弥补现有非致命武器装备力量的不足。

参考文献

[1] 洪伟量,刘剑洪,赵凤起, 纳米Pb(II)-没食子酸配合物的合成及其燃烧催化性能, 化学学报,Vol.63,2005

[2] 纳米固色剂Tinokin VG帮您解决牢度难题 , 工艺实践,Vol.27, 2005.2

[3] 李毕忠,吴坤, 纳米PET树脂及其工程塑料应用 , 化工新型材料 , Vol. 33 .No. 1,2005.1

[4] André Gsponer , From the Lab to the Battlefield?Nanotechnology and Fourth-Generation Nuclear Weapons, Disarmament Diplomacy,IssueNo. 67, October - November 2002

纳米技术论文范文7

魏启明教授出生于医学世家,外曾祖父是台湾最早期西医,父亲魏正明教授为日本福冈九州大学医学博士,是著名的血管外科专家:母亲王碧云教授为日本东京东邦大学医学博士,是著名的妇产科专家:二姐魏丽惠教授也是著名的妇产科专家,现为北京大学医学部人民医院妇产科主任教授、中华医学会妇产科分会副主任委员、中华妇科肿瘤学会副主任委员、中国妇产科杂志主编、全国人大代表,曾获得中国医师会最优秀医师奖。

魏启明教授在日本国立三重大学医学部取得医学博士学位并进行了心血管外科临床培训,博士论文题目为《人工心脏在心力衰竭的应用》。然后在美国MAYO医学中心心脏科师从John Burnett教授进行研究,发现脑钠素(BNP)是心力衰竭的重要临床指标之一:文章发表在美国着名的《循环》杂志上,并被美国心脏学会评为心力衰竭研究的关键论文。魏教授在世界上第一个发现c型多肽是一种特异的内源性静脉扩张剂,在《美国生理杂志》上并引起专业领域的极大重视。魏教授将ANP和CNP巧妙地结合在一起,研究发明新型人工多肽,获得了美国和国际的专利。这种多肽具有强烈的血管扩张和利尿效果,可治疗心肾衰竭和高血压:本研究发表在著名的《临床研究杂志》(Journal of Clinical Investigation),编者按指出,这是一个具有重要临床意义的发明。由于出色的研究成绩,魏教授被MYAO医学中心评为当年度杰出研究者,获得了MYAO医学中心著名的“KENDALL研究奖”。魏教授并到哈佛大学医学院作了关于心脏血管内分泌学的演讲报告,并与美国麻省理工学院医学生物学专家一起磋商,研究开发新型的医疗技术和医疗器械。

通过对于纳米生物技术的研究并与其他科学家的广泛合作,魏教授发现这是一个有着巨大发展前景的领域,着重开展了纳米技术对肿瘤和心血管疾病的早期诊断和药物靶向治疗研究,取得了关键技术突破。由于魏教授研究成绩斐然,美国著名的约翰霍普金斯大学医学院聘其担任心胸肾疾病的纳米生物技术研究团队和研究室的研发工作。约翰霍普金斯大学医院连续20年在全美医院排名中名列第一,并拥有多位着名的诺贝尔奖大师。

主题为“纳米医药和纳米生物学前沿”的科技部第293次香山国际学术会议于2006年11月召开,与中国科学院白春礼院长、科技部张先恩司长、东南大学顾宁教授一同作为组织者的魏启明教授,被与会代表及业内同侪这样评价:具备较为坚实的医学理论基础和技术攻关实力,正在为纳米生物技术的临床应用和纳米医药产业化等方面提供理论和技术支持。

为了纳米生物技术更快在临床应用和多学科结合,魏教授牵头组织了“美国纳米医学科学院”并当选为院长,还创立出版了英文纳米医学杂志并出任第一任主编:为协调各国纳米医学的研发和法规,魏教授牵头成立了“国际纳米医学科学院”并当选为名誉院长。魏教授共刊发超过170篇学术论文并被引用次数3000次以上,获选登上美国医学名人录和国际医学名人录,也先后被聘为国内外多所知名大学的客座教授,曾于2004年应邀到中国科学院院士学术会议上做了关于纳米医学的专题报告,并曾被聘为中国科学院海外专家评审委员和中国“973”国家重大研究课题专家组成员。现任重庆市科学技术研究院纳米医学首席科学家。通过魏启明教授和其他同仁的不断努力,纳米医学领域的研究开发正在形成蓬勃发展的趋势。

纳米技术论文范文8

【关键词】纳米材料;文物科技保护;应用

0 前言

我国历史悠久,文物资源丰富。随着时间的流逝他们都在经受着不同程度的损害,文物保护工作任重而道远。文物保护是应用自然科学的手段对文物进行调查研究和保护修复,其中材料科学对其起着重要的作用[1]。随着科学技术的不断发展,越来越多的新材料被应用于文物科技保护领域,纳米材料就是其中之一。

纳米材料[2]由纳米微粒构成,纳米微粒的尺寸范围是1~l00 nm,它是由数目较少的原子或分子组成的原子群或分子群,其表面是既无长程序又无短程序的非晶层;而在粒子内部是具有长程序的晶状结构,由于这种特殊的结构,导致了纳米微粒的表面效应、体积效应和量子尺寸效应[3],并由此产生许多与常规材料不同的物理、化学特性,许多高性能产品将有机会在纳米科技领域中实现。

1 纳米复合材料用于文物保护的优势

利用纳米材料特殊的性能,通过把某些纳米材料与传统有机高分子聚合物复合,用于文物保护,主要有以下几大优势:

1.1 疏水疏油性

纳米微粒尺寸小,比表面积大,表面能高,这种表面效应,使其具有很高的物理化学活性和很强的吸附性,可强力吸附气体分子,在材料表面形成一层稳定的气体薄膜,就使得水和油无法在其表面展开[4]。

如今随着工业化的发展,环境污染对文物古迹造成的危害日益严峻,纳米复合材料的疏水疏油性将为发展新型文物保护层材料提供新的方法,该类材料在阻止水蒸气,有机物,酸雨等有害物质对文物的侵蚀方面将会起到不可估量的作用。

1.2 减小光辐射

光辐射是影响文物寿命的重要环境因素,特别是紫外线照射能加速文物的老化[5]。纳米微粒的直径小,材料以离子键和共价键为主要结合力,对光的吸收能力较强,能够有效屏蔽光线,将其应用于文物表面保护,有利于文物抗紫外线和抗老化。例如纳米TiO2[6],被广泛用做抗紫外线吸收剂,具有优良的吸收紫外线的功能。

1.3 透明度好

文物保护用封护材料要求要透明无眩光,能够清晰显示文物本体的面貌。基于纳米材料的体积效应,人类可以通过控制纳米材料的大小与形状,达到对同一种化学组成材料的基本特性如颜色、光、电、磁等性质的控制的目的。比如,TiO2抗紫外线,无毒且透明,可探索用于文物展陈的箱体,灯光等设施,国内已有相关的研究[7]。

1.4 杀菌及防治微生物

细菌等微生物危害会引起文物特别是有机质文物的糟朽霉烂。封护材料要求具有一定的防腐性能。由于纳米材料有强大的吸附性,可用做抗菌材料,纳米二氧化钛,二氧化硅等抗菌性较好[8],可设计制备含有抗菌性纳米材料的复合材料用于文物保护。

2 纳米复合材料在文物保护中的具体应用

纳米复合材料作为一种很具发展前途的新型材料,在多种类别的文物中都已经显示出巨大的应用前景。

2.1 在金属类文物中的应用

纳米复合材料在金属类文物保护中具有广发的应用前景。对于青铜文物来说,青铜病是青铜器保存的大敌,而发生青铜病腐蚀的根本原因是在外界环境的作用下,青铜器本体发生了电化学腐蚀[9]。纳米复合材料的疏水性将有效阻止外界环境中的水分对文物本体的侵蚀,减缓电化学反应的发生。众所周知被称为铜镜中精品的“黑漆古”铜镜,表面层耐腐蚀性能优异,其耐腐蚀机理和形成机制受到了广泛的关注。相关实验和科学仪器分析表明[10],黑漆古铜镜表层就是由单一物相纳米SnO2组成的。

2.2 在石质文物中的应用

石质文物的病害主要来自自然界的风化作用和环境污染的侵蚀,该类文物的保护需要对其表层进行防护。同传统的表面防护剂相比,纳米复合材料优势明显。邵高峰[11]等人研制了一种环保型石质文物防风化材料,他们把纳米TiO2和SiO2改性以后将其分散于水性氟碳树脂中,通过多组实验得到了最佳复合体系,分析数据表明该防风化剂具有很好的防紫外线和防水耐蚀性能,且无毒环保,是一种综合性能良好的防风化材料。

2.3 在纸质文物中的应用

纸质文物由于材质本身和环境的影响易发生严重损害,特别是纸张的酸化加剧了其老化,人们也一直在探索研究各种脱酸技术[12]。意大利的 Rodorico Giorgi 等就成功的将纳米技术应用于纸质文物脱酸[13]。他们通过均相合成等方法制备了氢氧化钙在异丙醇溶剂中的纳米分散体系,将此体系应用于纸质样品中,不仅有效的降低了纸的酸度,同时多余的氢氧化钙通过和空气中的二氧化碳反应,会在纸纤维中形成一个碳酸钙储备层,能够长时期控制纸张的酸度,有利于纸质文物的长期保存。

2.4 在纺织品类文物保护中的应用

纺织品一般属于天然高分子材料,由于天然的降解和氧化作用以及外界环境的影响,变得极其脆弱。该类文物的保存与保存环境息息相关,特别是紫外线和霉菌对其损伤巨大。挑选兼具抗紫外线和抗菌性能的纳米材料,可设计合成纳米液相分散体系。据文献报道,纳米Ti02在古代纺织品保护中的应用研究工作已经展开[14],实验结果表明,经纳米材料处理后的纺织文物有更好的屏蔽紫外线和抗菌能力。

3 纳米材料在文物保护中的应用展望

二十一世纪将是“纳米的世纪”,纳米技术和纳米材料也给文物保护技术的发展提供了新的思路,这方面的研究工作国内外均已展开。作为一种新型学科,其基础理论研究还在逐步发展之中,对于文物这种不可再生资源,纳米材料的真正应用还需要在理论和技术经过反复验证并且相当成熟的时候实施。随着研究的不断深入,纳米材料在文物科技保护中的应用将会更加广泛。

【参考文献】

[1]周双林.文物保护用有机高分子材料及要求[J].四川文物,2003,3:94-96.

[2]白春礼.纳米科学与技术[M].云南科学技术出版社,1995.

[3]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000,3:42-48.

[4]王苏新,张玉珍.纳米材料的特性及作用[J].江苏陶瓷,2001,34(2):5-6.

[5]王庆喜.文物环境与文物保护综论[J].湖南科技学院学报,2009,30(6):65-68.

[6]汪斌华,黄婉霞,李彦峰,郑洪平,涂铭旌.纳米TiO2和ZnO的抗老化性应用研究[J].四川大学学报:工程科学版,2003,35(4):103-105.

[7]王君龙,孙红梅,祝宝林.文物防紫外线保护新材料研究[J].渭南师范学院学报,2004,19(2):28-29.

[8]邱松山,姜翠翠,海金萍.纳米二氧化钛表面改性及其抑菌性能研究[J].食品与发酵科技,2010,46(6):5-7.

[9]傅丽英,陈中兴,蔡兰坤,祝鸿范,周浩.溶液pH值与氯离(下转第91页)(上接第62页)子对青铜腐蚀的影响[J].腐蚀与防护,2000,21(7):294-296.

[10]刘世伟,王世忠,王昌燧,周贵恩.“黑漆古”铜镜表层的结构分析[J].中国科学技术大学学报,2000,30(6):740-743.

[11]邵高峰,许淳淳.环保型石质文物防风化剂的研制[J].腐蚀与防护,2007,28(11):562-565.

[12]奚三彩.纸质文物脱酸与加固方法的综述[J].文物保护与考古科学,2008,20(z1),85-94.

纳米技术论文范文9

纳米科技和纳米材料是20世纪80年代刚刚诞生并正在崛起的高新技术,它是研究包括从亚微米、纳米到团簇尺寸(从几个原子到几百个原子以上尺寸)之间的物质组成体系的运动相互作用以及可能的实际应用中的科学技术问题,研究内容还涉及现代科技的广阔领域。世界各国都对纳米技术给予了极大关注,美国、日本、德国等发达国家,都将纳米技术和纳米材料作为研究开发的热点课题,并得到政府的资金支持。随着科技发展进步,人类对纳米科技的研究日益广泛深入,纳米技术也已开始得到了较大范围的应用,并越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响则更多地体现在各国间对纳米科技及其应用的激烈竞争上。具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地被开发出来,开始形成一个新型的纳米功能性产品的产业领域。在众多的纳米材料中,一些高性能的纳米陶瓷粉体材料,也就是广义上的无机非金属纳米材料的开发应用最为广泛和活跃,并已在多种产业和实际产品中得到应用,出现了高性能多功能性纳米产品,从而使得许多传统产业正在发生一场新的技术革命。随着纳米技术和纳米材料进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,并对人类社会的发展和进步产生深远地影响。

纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。20世纪90年代起,各国科学家纷纷投入一场“纳米大战”,在0.10―100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。

中国科学界不甘人后,1993年中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着中国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。研究材料学的专家学者也不甘人后,纷纷把眼光瞄准了“纳米”这一新技术领域,使得纳米科技和纳米技术取得了迅速地发展。随着纳米材料和纳米技术进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,对人类社会进步产生深远的影响,同时发展纳米科技是转变经济发展方式,实现可持续发展的关键。战略性新兴产业是新型科技和新型产业的深度融合,代表着科技创新的方向,也代表产业发展的方向,使战略性新兴产业尽早成为国民经济的先导产业和支柱产业,要大力推动自主创新、提高原始创新能力和关键核心技术创新能力,着力突破制约经济社会发展的关键技术问题。加快推进自主创新,紧紧抓住新一轮世界科技革命带来的战略机遇,更加注重自主创新能力,加快科技成果向现实生产力转化,加快科技体制改革,加快建设宏大的创新型科技人才队伍,谋求经济增长与发展主动权,形成长期竞争优势,为加快经济发展方式转变提供强有力的科技支撑。

太原高科公司及企业技术中心简介

太原高科耐火材料有限公司于1989年由高树森董事长基于创新耐火材料,服务产业经济的梦想而发起创立。在成立之初,这只是一家简易的小型耐火材料厂,经过几年的艰苦奋斗,企业取得了初步的发展。1992年经山西省高新技术委员会认定、国家太原高新技术开发区管委会批准,成立了太原高科耐火材料有限公司(简称太原高科)。公司建立了耐火材料生产厂和专门的耐火材料技术研究中心,并被山西省科技厅确立为山西省耐火材料工程技术中心,成为耐火材料行业唯一的部级高新技术企业。并承担山西省高端重点行业用耐火材料的技术研究与开发工作。先后研究开发出多种耐火材料高新技术产品,及时将研究成果转化为生产力,大大促进了企业的发展,同时为技术研究和自主创新提供了雄厚的资金支持,形成了生产与科研相互促进的良好局面。公司与国内多所高等院校、科研机构在产品开发、技术交流等领域建立长期的合作关系,使公司在新产品技术性能、使用性能、技术储备等方面不断创新,形成了产学研联盟,具备研究、开发、生产高技术特种耐火材料能力,形成了自主研发、自主创新和自我实现产业化的良性循环。经过20年的发展,在实现了公司的管理升级和稳步、持续、快速发展的同时,确立了以“以科研为依托,市场为导向”的科技兴企的发展战略。

目前,太原高科已通过ISO9001-2000国际质量体系认证和ISO14001:2004环境管理体系认证,被山西省科委确定为“山西省科技先导型企业”、太原市科技局授予“太原市科技创新示范单位”、太原高新区授予“十佳技术创新项目企业”及“质量管理先进企业”、山西省认定为企业技术中心。最近,中国耐火材料行业协会授予太原高科耐火材料有限公司、山西省耐火材料工程技术研究中心“行业纳米材料产业化示范基地”的称号。

实践证明,坚持科学发展观,坚持走自主研发和自主创新的道路是太原高科发展的根本。通过多年的努力,太原高科公司已走出了自主研发、自主创新、自主生产科研成果的路子,由“中国制造”变为“中国创造”,而且实际效益十分突出,在这次金融危机的冲击下,该企业也受到一定程度的影响,但在高董事长的带领下克服重重困难,企业产值利润仍得到了较大增长,并且由于纳米科技、纳米材料开发成功和应用,企业潜在产值利润发展空间十分广阔。这同时也从一个侧面说明,我国科技体制改革中建立以企业为主体、产学研结合的技术创新体系,并将其作为全面推进国家创新体系建设的突破口,只有以企业为主体才能坚持技术创新的市场导向,有效整合产学研的力量,确实增强国家竞争力,以企业为主体的创新机制,对科研成果迅速转化为生产力具有重要的推动作用。

纳米耐火材料研究成果概述

耐火材料是钢铁、有色金属、建材、石化、能源、环保、电子、国防等基础工业领域重要的基础材料,是高温工业热工设备不可缺少的重要支撑材料,与钢铁等高温工业的技术发展相互依存互为促进。为了开发21世纪新一代耐火材料,迫切需要运用尖端的纳米技术和纳米材料开发后续的纳米耐火材料。随着科学技术进步的日益加快和对纳米技术广泛深入的研究,作为高新技术,纳米技术得到了迅速发展和广泛应用,并且越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响则更多地体现在各国间对纳米技术及应用的激烈竞争上。耐火材料作为高温工业,特别是钢铁工业服务的基础材料,它一直伴随着高温技术和材料科学的进步而发展。如何应用尖端的纳米技术和纳米材料来改变耐火材料的组织结构,特别是微观显微结构,全面提高耐火材料的各项性能指标,更好地满足钢铁等高温工业发展及使用需求,一直是广大耐火材料工作者所关注的热点问题。因此,高科公司和技术中心研究人员在高树森董事长的带领下,对纳米技术、纳米材料及其在耐火材料领域中应用开展了长期的、多方面的探索与尝试,并且在此工作基础上还进行了专题研究和自主创新工作;结果表明,采用纳米技术制备的纳米陶瓷粉体材料所具有的功能特性,在纳米耐火材料领域中应用都能够充分地显示出来且得以确认;采用纳米技术和纳米材料制成的纳米耐火材料产品,在钢铁工业新技术(如炼钢二次精炼)中使用,也显示出令人振奋的使用结果。

近年来,我们对纳米技术和纳米材料进行了深入研究和自主创新,自2008年至今,在将近两年的时间里,共申报了六项纳米耐火材料发明专利项目,涉及耐火材料的主要品种,前五项发明专利均已公布,并经有关部门严格筛选后评定,被列为年度国家重点发明专利项目,并纳入国家发明专利实施转化项目中,还被国家知识产权局出版社编入发明人年鉴中;前两项发明专利获第九届香港国际发明博览会金奖,又获第十二届中国北京国际科技产业博览会第三届中国自主创新杰出贡献奖。2010年这些纳米发明专利在第十三届中国北京国际科技产业博览会上又获“中国自主创新杰出贡献奖”,并在“中国高新企业发展国际论坛”上做了《关于发展纳米科技和纳米耐火材料自主创新及其产业化》的重要报告。六项纳米发明专利项目分别是:

纳米耐火材料发明专利之一

纳米复合氧化物陶瓷结合铝―尖晶石耐火浇注料及其制备方法(公布号:101397212A)

纳米耐火材料发明专利之二

纳米Al2O3薄膜包裹的碳―铝尖晶石耐火浇注料及其制备方法(公布号:101417884A)

纳米耐火材料发明专利之三

纳米Al2O3、MgO复合陶瓷结合尖晶石―镁质耐火浇注料及其制备方法(公布号:101544505A)

纳米耐火材料发明专利之四

纳米Al2O3、MgO薄膜包裹的碳―尖晶石镁质耐火浇注料及其制备方法(公布号:101555153A)

纳米耐火材料发明专利之五

纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质耐火浇注料及其制备方法(公布号:2101767999A)

纳米耐火材料发明专利之六

纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料及其制备方法(申请号:201010165554.9)

纳米耐火材料系列发明专利的公布,是纳米技术和纳米材料在耐火材料领域中成功应用的重要标志,也是纳米技术和纳米材料在传统产业中自主研发、自主创新的重要发展方向,对钢铁等高温工业的发展和高新技术的应用,作出了重要贡献。同时,发展纳米科技是转变经济发展方式,实现可持续发展的关键。具有战略性的纳米新兴产业是新兴科技、新兴产业的深度融合,代表着科技创新的方向,也代表产业发展的方向。使纳米战略性新兴产业尽早成为国民经济的先导产业和支柱产业,要大力推动自主创新,着力突破制约经济社会发展的关键技术问题。加快推进自主创新,紧紧抓住新一轮世界科技革命带来的战略机遇,更加注重创新,加快自主创新能力,加快科技成果向现实生产力转化,加强科技体制改革,加快建设宏大的创新型科技人才队伍,谋求经济增长与发展主动权,形成长期竞争优势,为加快经济发展方式转变提供强有力的科技支撑。太原高科纳米耐火材料的研究及其发明专利成果,大大推动了我国纳米技术、纳米材料的进步与发展,为耐火材料的发展开辟了一片新天地,也为开发更长寿、更节能、无污染功能化的新型绿色耐火材料带来了发展空间。为了进一步深入发展纳米技术在耐火材料领域中的应用研究,使纳米技术在耐火材料领域中得到更广泛的应用,太原高科将研究开发更多更实用的纳米耐火材料发明专利成果,以满足钢铁等高温工业发展需求,也为钢铁等高温工业技术的实施与发展提供了最佳服务。

发展“绿色耐材” 节能减排

耐火材料是高温工业的重要基础材料。在全球大力发展低碳经济形势下,实现高温工业的“绿色化”与耐火材料工业自身的“绿色化”不无关系。绿色耐火材料战略是关系到我国当前和今后耐火材料行业可持续发展的重要发展战略。我国在耐火材料总产量和品种数量上是当之无愧的世界第一。但就“绿色度”而言,差距却甚大,表现在诸如:炼钢耐火材料的平均比消耗高出国际先进水平1倍以上,高性能、长寿命产品比例少,质量稳定性欠佳,技术附加值不高,能耗高,存在环保和公害问题,某些原料资源短缺等。

我们研究开发的新型纳米耐火浇注料及其整体浇注技术,大幅度提高浇注的整体炉衬的使用寿命,节省资源,且节能环保,生产成本相对较低,经济适应性强,无粉尘,无排放有害气体,特别是无纳米粉体的污染,是真正的绿色耐火材料,适应循环经济发展要求,具有显著的经济效益和社会效益,已达到国际先进水平。该系列项目的大力推广也将为我国丰富的耐火矿产资源在现代耐火材料应用中提供广阔的发展前景,将资源变为产品,推动市场效益,可带动资源产业的更快发展。

建立纳米耐材产业化示范基地

我国钢铁产量巨大,2009年钢产量达5.7亿吨,位居世界首位,约占世界总产钢量的47%以上,钢铁生产的高速增长是伴随着流程优化与结构调整来实现的,其重要的就是对加快推进生态文明建设是从清洁生产总体高度上,加快科技创新与进步,继续将纳米技术纳入到耐火材料尖端技术之中,进行深入的研究开发和自主创新,并实施产业化,对钢铁等高温工业发展、高新技术的采用与实施、节能减排、提高质量、创新品种都将发挥非常重要的作用。

纳米科技和纳米材料是21世纪最有发展前景的高新技术,它对国家经济发展、经济转型、传统经济改造、自主创新等均具有重要意义。然而,纳米科技和纳米材料只有在生产实际应用中才能体现出自身的重大价值。国外多个国家都对纳米产品的产业化给予特别关注,并且作为纳米科技发展水平的重要标志。纳米材料制备技术由实验室转移到工厂生产势在必行,在纳米技术产业化过程中存在多方面制约纳米发展的瓶颈问题。为了解决纳米耐火材料产业化中出现的各种瓶颈问题,我们开展长期的专项研究并取得了较好的效果,这就为纳米耐火材料产业化铺平了道路,为加快推进产业结构调整,完善现代产业体系,加快推进传统产业技术改造,加快发展纳米战略新兴产业,全面提升产业技术水平和国际竞争力,都具有重大意义。

为此,建立纳米耐火材料产业化示范基地,对当前和今后耐火材料工业和钢铁等高温工业的发展是非常有意义的,而且也是十分紧迫和刻不容缓的。此外,国际间纳米技术和纳米材料的竞争更多体现在工业生产的纳米产品上,太原高科对纳米科技和纳米耐火材料的研究开发和自主创新作了长期的艰苦努力,并取得多项发明专利成果,并且对纳米科技和纳米耐火材料继续开展深入研究和产业化基地建设将会取得更多、更大进展,为我国纳米科技发展作出贡献。产业化示范基地建立后,太原高科将运用多项高新技术,谋求与尖端的纳米技术整合,加速纳米耐火材料的理论与实际应用研究,为耐火材料行业的纳米化发展创造条件和奠定基础,完成开发成果后,可积极推进开发和创新成果的产业化,及时服务于钢铁等高温工业生产中,使纳米技术及早地显现出经济效益和社会效益,为科技发展和进步作贡献,努力把21世纪纳米尖端耐火材料的开发与生产做好、做成功;为国家高温工业的发展继续作研发与服务;加快传统工业的改造,促进我国经济的平稳、快速发展。■