HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

故障诊断方法综述集锦9篇

时间:2023-06-21 09:05:36

故障诊断方法综述

故障诊断方法综述范文1

【关键词】Sugeno模糊模型;数控机床;故障诊断法

数控机床在机械工业生产的地位十分重要,在提高产品质量与竞争力,提高企业生产效益等方面具有极为重要的作用,属于机械工业生产与经营的核心设备。一旦数控机床出现故障,将会为企业带来较大的经济损失。为确保数控机床运行的安全性与可靠性,就需要对数控机床的运行状态进行监测,并对出现的故障进行诊断。当前,很多数控机床故障诊断系统是建立于知识上的,以数控机床领域操作人员或专业人员的经验型知识为核心,通过对数控机床故障征兆的描述进行推测,从而获得故障诊断结果。这种故障诊断方式具有推理逻辑清、知识表达直观等优点。由于机床故障的描述都是诊断专家的诊断经验,其诊断结果存在着较大随意性,为此,本文提出基于Sugeno模糊模型的数控机床故障诊断法,将各种诊断结果进行综合处理,以提高故障诊断的准确性。

1 基于Sugeno模糊模型的数控机床故障诊断法

1985年,Takagi 与Sugeno共同提出的一种T-S模糊模型,后被研究者称之为“Sugeno模糊模型”。Sugeno模糊模型在本质是属于一种非线性模型,在表达复杂系统的动态特性中发挥着重要作用,于多输入单输出与多输入多输出综合系统的辨识与控制中广泛应用。本文中,在数控机床故障诊断中引入Sugeno模糊模型,对各个专家诊断结果进行综合,针对专家故障诊断中存在的不足进行补充,从而进一步消除专家诊断的随意性,提高故障诊断结果的准确性。

Sugeno模糊模型系统,简称为T-S系统,在众多领域内获得广泛应用。针对n个输入单输出,M个模糊规则数的T-S系统,其模糊规则可以用如下形式来表述:

为提高数控机床故障诊断结果的准确性,在进行数控机床故障诊断时,需要多名诊断专家进行故障诊断。根据每个专家诊断故障的前提与诊断结论,可以用T-S系统模糊诊断规则来表述;如进行数控机床故障诊断的专家个数为M,就其诊断规则为M个;将诊断专家i进行故障诊断的知识规则用模糊诊断规则R(i)来表示。将每个参与设备故障诊断的专家权威性设为相等,则将可以所有专家诊断结果的综合,视为数控机床设备发生故障的真正原因。

可以将诊断专家知识的综合M视为包含着M个模糊规则的多输入多输出系统,也就可以采取基于Sugeno模糊模型的数控机床故障诊断法进行综合处理,Sugeno模糊模型的总输出则是综合M条模糊规则的诊断结论。

在应用Sugeno模糊模型于模糊控制的工程中,其模糊集合的隶属函数一般会取梯形、三角形或其他指数型,如针对专家经验表示的征兆模糊数,包括设备振动幅度、噪音强度等,其模糊集合的隶属函数取为梯形函数,如下图1:

图1 专家经验表示的征兆模糊数梯形隶属函数示意图

2 基于Sugeno模糊模型的数控机床故障诊断法的实际应用

数控机床设备故障征兆表现为可以用以下征兆模糊数进行表示:

应用模糊推理规则,将以上规则形式转变为以下形式:

在数控机床征兆表现中,有些是较为直接的,如加工波纹,有些需要通过采集信号来发现,如数控机床自由测点振动警告等。

在某数控机床车削加工直径为125mm、长为80mm的短轴类零件时,主轴转速为720r/min。工作人员发现,在加工过程中,床身出现较大强度振动,并伴随异常噪音。通过对机械设备信号频谱及特征参数进行分析后,三名诊断专家对机械设备故障进行诊断,分别对工件加工表面出现波纹、刀架水平振动信号高频比例较大、刀架垂直方向超过危险值、刀架系统刚度下降、机床切削参数不合理的可能性进行了确定,应用Sugeno模糊模型,如下表:

通过对诊断专家模糊诊断结果的综合处理,发现机床出现故障1的可能性为74.8;出现故障2的可能性是80,说明机床刀架系统刚度下降的可能性为80,机床切削参数不合理的可能性为75。说明引起机床故障的主要因素为刀架系统刚度下降,通过改进装夹方式,增加刀架刚度,机床加工工件顺利完成。证明了Sugeno模糊模型故障诊断的准确性。

3 结语

数控机床属于工业生产中十分关键的设备,其运行的稳定性与安全性直接影响着机械产品加工的质量与效率。在数控机床应用过程中,容易出现一些问题,为此需要进行设备故障诊断。本文提出基于Sugeno模糊模型的数控机床故障诊断法,能够对各个专家诊断结果进行模糊综合处理,减少专家故障诊断的随意性,提高设备故障诊断的精确性。通过实际案例应用证明,基于Sugeno模糊模型的数控机床故障诊断法具备良好的精度,为企业获得了良好的经济效益。

【参考文献】

[1]李国志,任小洪,任兵,等.数控机床伺服系统的模糊自整定PID仿真研究[J].组合机床与自动化加工技术,2012(6):67-70.

[2]张根保,柳剑,王国强,等.基于任务的数控机床模糊可靠性分配方法[J].计算机集成制造系统,2012,18(4):768-774.

[3]文强.数控机床远程诊断中的模糊理论分析[J].科技传播,2011(1):75-76.

[4]刘阔,刘春时,林剑峰,等.数控机床的故障分布模型和可靠性评价技术研究[J].机床与液压,2012,40(15):148-150.

故障诊断方法综述范文2

关键词:风电 故障诊断 信息融合

中图分类号:TM315 文献标识码:A 文章编号:1674-098X(2014)11(c)-0041-01

风力发电是一种安全、清洁、技术成熟、成本适宜的新型能源,近几年来其发展速度非常迅猛。但是由于风电机组经常工作在低温、沙尘、风暴、冰雪等恶劣坏境条件下,导致风电机组故障甚至损坏,影响机组的安全可靠性。同时,风电机组超常疲劳运行和各种不确定因素影响,风电机组故障出现频率增大、种类多样的局面,因此风力发电机的故障诊断是一个不可回避的问题,它既涉及机械故障诊断又涉及电气系统故障诊断。通过检测监视、故障分析、性能评估等方法,及时、正确、有效地对风电机组各种异常状态和故障状态作出诊断,提出对机组的运行维护的必要指导,制定合理的检测维修制度,保证机组工作时发挥最大的设计能力和潜力,延长设备的服役期限和使用寿命,最大限度提高系统可靠性。

1 风电机组故障的分类

根据实践运行结论和分型统计,风电机组的故障类型大致可概括为电气故障和机械故障两大类。其中,电气故障包括传感器故障、低压器件故障、通信故障、变流器故障、变桨故障等,机械故障包括齿轮箱故障、回转支撑故障、轴承故障、叶片故障、机械刹车故障、液压故障、对中故障等。

许多国内外的风电机组运行专家通过十几年来风电机组故障方面的研究,从大量数据的统计和分析中发现风电机组的故障情况虽然存在一些不确定性因素,但基典型风机组件故障的发生率本上保持着一些基本的规律趋势。发生率按照由高到低依次约为:液压系统(20%)、传感器(11%)、转子(10%)、电力模块(9%)、变桨执行模块(7%)、发电机(7%)、齿轮箱(6%)、刹车系统(5%)和电子模块(5%)。

可见,液压系统、传感器、转子电力模块和变桨执行模块部分是占突出地位的故障发生组件,也是故障监控系统及运行维护尤其予以重视的部分。综合对多年来各种风力发电机组的故障类型和数据统计分析,得出典型故障及其严重程度如表1所示。

针对上述典型故障,一般采取了根据设备的实际运行状态来安排维修和按照计划进行维修的基本措施。在正确排解上述故障的同时,监测和数据采集系统将对核心故障数据特征将进行存储、判别类型并发出报警,最终形成故障报告,根据故障轻重程度指导系统维修维护或容错运行。

2 风电机组故障诊断方法

由于风电是一个方兴未艾的新事物,其故障诊断技术也随之引起了国内外学者的高度重视,先后出现了传统故障诊断方法、基于模糊理论和可能性理论的方法、专家系统的方法、神经网络的方法、基于粗糙集理论的方法。但是由于用于描述风电机组故障特征与故障类型之间的对应关系是较复杂的,一种故障类型可能对应多种特征信息,而一种特征信息也可能对应多种故障类型,另外故障特征常常呈现出多种不确定性特征,所以单靠一种理论或某种方法在复杂环境下无法实现准确、及时、有效地对风力发电机组进行故障诊断。目前基于信息融合的故障诊断方法以其独特新颖、推理科学、诊断准确而成为一个重要的研究方面,但是当前故障诊断中信息融合依然是基础性研究,所以在这方面需要更加深入和广泛的研究。

将证据推理模式、神经网络与信息融合理论相结合形成一个综合故障诊断模式不失为一个研究方向。故障诊断信号源于各类传感器,因此故障特征信号多数情况存在随机、模糊、不确定等特性,分别对应于一种或多种故障类型,采取信息融合手段并根据故障特征和故障之间的关联度,建立起可统一度量上述各不确定信息的测度;采取证据推理(如D-S证据推理),可以解决不确定性信息问题,将各种不确定性故障特征作为推理证据,合并融合后做出诊断决策;采用神经网络方法可设计容错控制器,结合信息融合故障诊断决策结果决定是否采用容错控制。将模糊推理、信息融合(D-S证据推理)、神经网络结在一起,各自发挥优势,弥补了单一故障诊断方法的缺陷,提高了系统故障诊断和容错控制效果。

3 结语

随着风电机组的不断发展,机组的故障诊断技术也在不断发展,各种诊断技术的相互融合,优势互补是保证故障诊断准确有效的方向,成熟良好的诊断技术应用在风电机组中,必将推动风电事业的进一步发展。

参考文献

[1] 叶杭冶.风力发电机组监测与控制[M].机械工业出版社,2011.

[2] 姚兴佳,宋俊.风力发电机组原理与应用[M].机械工业出版社,2011.

故障诊断方法综述范文3

[关键词]舰船机电;设备;故障;检测

中图分类号TH165.3 文献标识码:A 文章编号:

海军装备维修经历了从被动维修到主动维修、从重维修到重预防、从救火式人力维修到系统的信息化智能维护的转变,在舰船机电设备的故障维修过程中取得了许多重要数据,但对这些数据、参数的科学分析以及综合利用还缺乏有效的工具平台,不能为机电设备的维修保养工作提供系统的、具体有效的信息。下面就舰船机电设备故障检测系统数据的重要来源进行分析,并就如何构建基于这些数据的故障检测系统进行探讨。

一、舰船机电设备故障检测系统的数据来源

1、舰船机电设备故障检测系统的基础数据录入、管理。要实现对机电设备的检测,机电设备检测的基础数据是不可或缺的。要对检测数据进行有效管理,一是要将设备进行分类管理,做好设备的数据库,使得所有设备在系统中一目了然,不遗漏,不重复;二是要参照厂家说明,组织好设备基本参数的归档、录入以及专家规则的描述,对于设备数据或描述有怀疑的部分,可以和厂家核对后再录入,力求数据或描述的真实、有效,这些数据及描述是设备进行故障检测时的重要参考资料,在进行录入、设计时要综合考虑多方因素,使得故障检测系统运行时能对故障反应准确、及时。

2、舰船机电设备故障检测系统的运行规则设定、管理。一是实现对参数规则的管理。检测系统需要进行检测的参数包括数值、文字、逻辑三种类型。参数规则之一,文字型的设备状态描述和预先录入的专家规则的条件呼应;参数规则之二,数值型参数设定的不同数值区间对应不同的设备状态描述和状态值,设备状态描述和专家规则的条件对应关系和前一条规则一样,而状态值则因应用户需要和设备基础参数的不同而不同。当机电设备检测系统启动时,系统将检测到的参数类型,通过相应的参数规则,或是和专家规则对应,或是和设备设定的参数区间对比,从而发现故障,对故障进行诊断,对诊断结果进行描述。二是对状态规则的管理。设备故障的发生不是单一的静止事件,它是一个动态的过程。要实现设备故障的全过程检测,就必须对状态规则进行设定、管理。状态规则的设定首先是要科学计算单个设备的设备值。它主要是根据单个设备的检测参数的权值和设备的当前状态值来计算。第二要根据设备的隶属关系以及系统中单个设备在设备子系统中的权值占比来计算子系统的状态值。舰船机电设备是一个复杂的系统,在舰船装备中整体发挥重要作用,同时,在舰船机电设备这一个大的系统中,又包含多个子系统,它们共同作用,相互影响。在对设备进行动态分析时,设定与参数规则类似的状态规则,将计算好的系统中的设备值或子系统的状态值划定一定的区间,并用相应的文字对设备及子系统进行描述,当启动设备总系统的动态分析时,该系统先计算所有子系统的状态值,然后将子系统状态值和状态规则对照,获取有关设备故障状态的文字描述。

3、舰船机电设备故障检测系统检测数据的分析、处理。这一部分数据是检测系统自动生成,经年累月忠实记录了设备监测系统运行的成果,是保障机电设备运行的重要参考,对于优化机电设备功能,提升机电设备的质量也有重要意义。在检测系统的设计中,必须要有对这些数据的分析部分,同时,对一些故障检测数据进行人工处理,例如,一些参考价值较小的数据要废弃,一些从数据中分析出的具有重要参考意义的数据要进行输入、设定。

4、舰船机电设备故障检测系统对故障的诊断数据。检测系统对设备管理的最重要的作用不是检测,而是实现对故障的诊断。舰船机电设备故障的诊断方法有多种多样。机电设备故障检测系统要综合考虑各个检测技术方法的优缺点,根据舰船机电设备的具体情况择优进行设计。故障检测系统设计时必须包含诊断的内容。首先可以在启动检测系统之前,由专业人员根据舰船机电设备的具体情况,输入附加的诊断条件。第二,也可以在系统设计时要求检测到的参数值与设备故障设定值匹配,并进行故障文字描述。第一类一般用于对机电设备运行有特殊要求的环境时,第二类多用于故障发生比较规律、故障设备状态值具有原始参考值时。

二、舰船机电设备检测系统的运行原理

舰船机电设备虽然错综复杂,数量众多,但所有的机电设备存在一定的内在联系,故障检测系统一般根据它们的功能分为多个大的子系统,子系统下面再细分,逐级下去,直至所有重要机电设备均攘括其中。在启动故障检测系统时,首先是对设备进行状态检测,以选取的设备为基础,获取同级系统设备的检测参数,依据参数规则计算最新状态值,将最新状态值进行加权,计算出本级设备的状态值,根据设备状态规则,获得设备的相关文字描述,从中查找故障设备;第二提取故障设备的故障参数、状态值,相关的故障文字描述,判断设备故障的性质;第三就是参考故障检测系统的故障诊断,运用专业科学的方法,确定故障源、故障性质,并确定维修方案(更换、维修、调整等)。

三、舰船机电设备检测系统的维护

舰船机电设备检测系统是采用计算机数据管理和辅助决策技术,实现机电设备数据的自动处理以及故障的自动检测、诊断。在这一检测系统的维护中,要注意以下几点:

1、提高警惕,保障数据的安全性。作为我国海军的重要装备之一,舰船机电设备的各类运行及检测数据属于重要的机密资料,有必要对这些数据以及据此作出的分析结论等进行保密。

2、及时跟进,对检测系统的数据库进行更新、升级。舰船机电设备并不是一成不变的,一些过时或报废的设备会遭到更新。对新的机电设备参数数据要在检测系统进行更新。同时也要根据科学技术特别是有关检测技术的发展,及时对系统进行升级,确保系统的有效运行。

四、建立舰船机电设备故障检测系统的重要意义

机电设备的故障检测及维修是装备管理的重点、难点,舰船机电设备故障检测系统就是为解决这一难题而设计的,它混合了多种有效的故障检测技术,例如基于可测信号处理的故障检测技术、基于故障诊断专家系统的故障检测方法、基于故障树的故障诊断方法以及基于人工神经网络的智能故障检测方法等,做到了对设备故障的快速、准确、动态检测及诊断,极大提升机电设备运行的可靠性,提升了我军装备管理的现代化水平。

参考文献:

[1] 史跃东,李军华. 舰船装备海上维修对表面工程技术的需求[J]. 兵工自动化. 2014(01)

[2] 吴,刘瑜,李晓晨. 船艇设备监测中的故障树分析[J]. 液压与气动. 2013(10)

[3] 熊小刚. 对机电设备电气断路故障检测的探析[J]. 中小企业管理与科技(上旬刊). 2011(08)

期刊快递地址:大连市西岗区沿海街1号海军驻大连426厂军代表室

故障诊断方法综述范文4

[论文摘要]从汽车诊断对汽车维修的重要性来探讨诊断过程中的思路问题,对于汽车维修人员来说,有一个好的诊断思路在诊断汽车障碍过程中会起到事半功倍的效果。

在汽车维修领域里,由于种种原因,很多维修人员在判断故障时失误较多,并不是因为他们技术欠缺,而是在诊断过程中过于急躁。遇到问题时不能冷静的思考,找到解决问题的方法。在确定维修思路前,千万不要忙于动手。首先要排除杂念,然后再遵循一定的诊断程序。

一、汽车故障诊断时要注意的问题

(一)查找合适的维修信息。对于装有自诊断系统的待检查的汽车来说,检查诊断的第一步就是查找合适的维修信息。必须拥有修汽车的说明书,不能用推测、猜想,如果实在找不到原车说明书,用同类车型作参考也可以,但要注意数据的差异。除此之外,最好拥有要维修汽车的服务通报。

同时,必须拥有汽车的电路图和结构图,没有相应的电路图对于诊断计算机系统的故障是很困难的,甚至是不可能的。制造商提供的维修手册、通用维修手册或电子数据系统中必须载有维修程序信息。诊断结果可以由专用的输出传感器表明是否有故障,但无法显示故障是出在传感器本身还是出在导线上,必须有合适的检查程序以确定出准确的故障原因。一本部件位置手册可以帮助找到汽车上的某一个部件,从而节省时间。

(二)积极的查找故障。有些汽车的间歇性故障是难于诊断的,除非是你检查汽车时正好故障显现。换句话说,当我们进行诊断测试时,故障症候不出现,故障就难以诊断。

当故障一出现,立即直接到现场去诊断故障。这一方法对无法启动的故障尤为适用。如果出现这种情况,应当告知顾客不要再试图启动汽车。这样做的费用可能偏高,但有时候,这可能是成功地诊断故障原因的唯一方法。一定要乐于多跑上几千米为顾客诊断,排除故障。

在汽车检修中,如果计算机装有可拆卸的“可编程只读存储器”,那么必须拥有最新的“可编程只读存储器”刷新的信息。假如不具备这类知识,而汽车制造商却推荐更换“可编程只读存储器”来修正一项特别的驾驶性能,那么将在检查、诊断上浪费时间。

再有一点需要注意的常识是,必须知道发动机的机械故障也能产生诊断故障代码,因此诊断故障代码并不一定是发动机计算机系统某一元件的故障。例如,如果是由于排气阀烧坏而使汽缸压缩性变差,而诊断故障代码显示的一直是氧传感器提供的缺氧信号。事实上,大量的油气混合气在这个汽缸内未燃烧,氧传感器能感应到排气气流中附加的氧气。这时必须能决定到底是传感器故障导致缺氧故障码还是有机械上的原因。

二、根据故障的性质不同进行不同的维修

汽车维修很重要的一点就是确定故障性质。根据汽车故障性质、状态的不同采用不同的维修方法。

(一)按工作状态可分为间歇性故障和永久性故障。间歇性故障就是有时发生、有时消失的故障。永久性故障是故障出现后,如果不经人工排除,它将一直存在。

(二)按故障程度可分为局部功能故障和整体功能故障。局部功能故障是指汽车某一部分存在故障,这一部分功能不能实现,而其它部分功能仍完好。整体功能故障虽然可能是汽车的某一部分出现了故障,但整个汽车的功能不能实现。

(三)按故障形成速度分,有急剧性故障和渐变性故障。急剧性故障是故障一经发生后,工作状况急剧恶化,不停机修理汽车就不能正常运行。渐变性故障发展较缓慢,故障出现后一般可以继续行驶一段时间后再修理。与急剧性故障相类似的一种故障叫突发性故障。在故障发生的前一刻没有明显的症状,故障发生往往导致汽车功能丧失,甚至危及人身、车辆安全。

(四)按故障产生的后果分,有危险性故障和非危险性故障。突发性故障和急剧性故障属于危险性故障,常引起汽车损坏,危及到车辆和人身安全,是汽车故障诊断与预防的重点。渐变性故障属非危险性故障,故障发生后一般可以修复。

三、汽车诊断时要注意以下三点

(一)要有详细的汽车诊断参数。汽车诊断参数是诊断技术的重要组成部分。在不解体的条件下直接测量结构参数十分困难,因此必须通过状态参数进行描述。此时用来描述系统、零件和过程性质的状态参数称为诊断参数。一个结构参数的变化可能引起很多状态参数的变化。究竟选择哪些状态参数作为诊断参数,应从技术上和经济上综合分析来确定。

(二)合理使用汽车诊断方法。汽车在工作过程中,各种零件和总成都处于装配状态,无法对其零件进行直接测试,例如汽缸的磨损量、曲轴轴承的间隙等,在发动机不解体的情况下是无法测量的。因此,对汽车进行诊断时都是采用间接测量,如通过振动、噪声、温度等物理量的测量,来间接诊断汽车的技术状况。由于采用间接测量方法进行判断,必然会带来一些“不准确性”,例如,发动机工作时,曲轴主轴承的工作状态可分为正常状态和不正常状态两种情况,如果采用机油温度作为判断轴承工作状态的特征,并将油温分为“正常”、“过高”两种情况,则可能会产生误判。因为机油温度过高,固然可能是由于轴承运转失常所致,但也可能是其它原因(如机油粘度不合适、机油量不足、机油散热器不良等)造成机油温度上升。

“故障树”分析法,是根据汽车的工作特征和技术状况之间的逻辑关系构成的树枝状图形,来对故障的发生原因进行定性分析,并能用逻辑代数运算对故障出现的条件和概率进行定量估计。这是一种可靠性分析技术,它普遍应用于汽车等复杂动态系统的分析。树枝图分析法用于汽车诊断,不仅可以分析由单一缺欠所导致的系统故障,而且还可以分析两个以上零件同时发生故障时才发生的系统故障,还能分析系统组成中除硬件以外的其它成份,例如可以考虑汽车维修质量或人员因素的影响。

汽车故障的发生带有随机性,属于偶然性事件,如若建立树枝图,并用它来分析故障,则有助于弄清楚故障发生的机理,除可进行定性分析外,还可以根据树枝图中影响故障发生因素的出现概率,定量地预测出故障发生的可能性(即故障发生的概率)。

除此之外,汽车诊断方法还有其它的一些方法,概括起来有:经验法、推理法、对比法、替换法、分析法、仪器辅助诊断方法等。对于汽车维修工来说,具体使用哪一种方法,就要看汽车的故障与原因了。

故障诊断方法综述范文5

一、汽车故障诊断时要注意的问题

1.查找合适的维修信息

对于装有自诊断系统的待检查汽车来说,检查诊断的第一步就是查找合适的维修信息。必须参考修汽车的说明书,不能用推测、猜想。如果实在找不到原车说明书,用同类车的说明书作参考也可以,但要注意数据的差异。除此之外,最好拥有要维修汽车的服务通报。

另外,必须拥有汽车的电路图和结构图。没有相应的电路图,诊断计算机系统的故障是很困难的,甚至是不可能的。制造商提供的维修手册、通用维修手册或电子数据系统中必须载有维修程序信息。诊断结果可以由专用的输出传感器表明是否有故障,但无法显示故障是出在传感器上还是出在导线上,因此必须有合适的检查程序以准确地找出故障原因。一本部件位置手册可以帮助找到汽车上的某一个部件,从而节省时间。

2.积极地查找故障

应及时学习最新的修理常识,及时更新知识,避免走弯路。有些汽车的间歇性故障是难于诊断的,除非是检查汽车时正好故障显现。换句话说,当我们进行诊断测试时,故障症候不出现,故障就难以诊断。当故障一出现,立即直接到现场去诊断故障,这一方法对无法启动的故障尤为适用。如果出现这种情况,应当告知顾客不要再试图启动汽车。这样做的费用可能偏高,但有时候这可能是成功诊断故障原因的唯一方法。一定要乐于多跑上几千米为顾客诊断,排除故障。

在汽车检修中,如果计算机装有可拆卸的“可编程只读存储器”,那么必须拥有最新的“可编程只读存储器”刷新的信息。假如不具备这类知识,而汽车制造商却推荐更换“可编程只读存储器”来修正一项特别的驾驶性能,那么将在检查、诊断上浪费时间和精力以及增加成本。

还有要注意的常识是,发动机的机械故障也能产生诊断故障代码,因此诊断故障代码并不一定是发动机计算机系统某一元件的故障。例如,如果由于排气阀烧坏而使汽缸压缩性变差,而诊断故障代码显示的是氧传感器提供的缺氧信号。事实上,大量的油气混合气在汽缸内未燃烧,氧传感器能感应到排气气流中附加的氧气,这时必须尽快确定到底是传感器故障导致缺氧故障码还是有机械上的原因。

二、正确判断故障,根据故障性质进行维修

汽车维修很重要的一点就是确定故障性质。根据汽车不同的故障性质、状况采用不同的维修方法。

1.按工作状态可分为间歇性故障和永久性故障

间歇性故障就是有时发生、有时消失的故障;永久性故障是故障出现后,如果不经人工排除将一直存在的故障。

2.按故障程度可分为局部功能故障和整体功能故障

局部功能故障是指汽车某一部分存在故障,这一部分功能不能实现,而其他部分功能仍完好;整体功能故障是即使为汽车的某一部分出现了故障,也使整个汽车的功能不能实现。

3.按故障形成速度分,有急剧性故障和渐变性故障

急剧性故障是故障一经发生,工作状况急剧恶化,不停机修理汽车就不能正常运行;渐变性故障发展较缓慢,故障出现后一般可以继续行驶一段时间。与急剧性故障相类似的一种故障叫突发性故障,在故障发生的前一刻没有明显的症状,故障发生往往导致汽车功能丧失,甚至危及驾驶员和车辆的安全。

4.按故障产生的后果分,有危险性故障和非危险性故障

突发性故障和急剧性故障属于危险性故障,常引起汽车损坏,危及到车辆和人身安全,是汽车故障诊断与预防的重点;渐变性故障属非危险性故障,故障发生后一般可以修复。

三、汽车诊断时要注意的问题

1.要有详细的汽车诊断参数

汽车诊断参数是诊断技术的重要组成部分,在不解体的条件下直接测量结构参数十分困难,因此必须通过状态参数进行描述,用来描述系统、零件和过程性质的状态参数称为诊断参数。一个结构参数的变化可能引起很多状态参数的变化,究竟选择哪些状态参数作为诊断参数,应从技术上和经济上经综合分析确定。

2.合理使用汽车诊断方法

汽车在工作过程中,各种零件和总体都处于装配状态,无法对其零件进行直接测试。例如汽缸的磨损量、曲轴轴承的间隙等,在发动机不解体的情况下是无法测量的。因此,对汽车进行诊断都是采用间接测量,如通过振动、噪声、温度等物理量的测量来间接诊断汽车的技术状况。采用间接测量方法进行判断,必然会带来一些“不准确性”。例如发动机工作时,曲轴主轴承的工作状态可分为正常状态和不正常状态两种情况,如果采用机油温度作为判断轴承工作状态的特征,并将油温分为“正常”“过高”两种情况,则可能会产生误判。因为机油温度过高,固然可能是轴承运转失常所致,但也可能是其他原因(如机油黏度不合适、机油量不足、机油散热器不良等)造成机油温度上升。

“故障树”分析法,是根据汽车的工作特征和技术状况之间的逻辑关系构成的树枝状图形,来对故障的发生原因进行定性分析,并用逻辑代数运算对故障出现的条件和概率进行定量估计。这是一种可靠性分析技术,普遍应用于汽车等复杂动态系统的分析中。树枝图分析法用于汽车诊断,不仅可以分析由单一缺欠导致的系统故障,而且还可以分析两个以上的零件同时发生故障引发的系统故障,还能分析系统组成中硬件以外的其它成分,例如可以考虑汽车维修质量或人员因素的影响。

汽车故障的发生带有随机性,属于偶然性事件。如若建立树枝图,并用来分析故障,有助于弄清楚故障发生的机理,除可进行定性分析外,还可以根据树枝图中影响故障发生因素的出现概率,定量预测故障发生的可能性,即故障发生的概率。

除此之外,汽车诊断方法还有其他的一些方法,概括起来有经验法、推理法、对比法、替换法、分析法、仪器辅助诊断方法等。具体使用哪一种方法,就要看汽车的故障与原因了。

3.灵活运用维修案例

在汽车修理过程中,很多修理工喜欢看案例,但不能照搬。那样的话还不如不使用案例,所以要灵活使用汽车修理案例。在使用案例时要遵循以下原则:一要看经典案例,目的是了解具有代表性的故障现象与规律;二要看描述生动完整的案例,目的是了解故障诊断思路,以及如何归纳、推理、总结;三要看典型案例,目的是了解某一车型同一故障的易发性;四要学习案例的写作与表述,很多维修人员会干不会说,会说不会写,其实写作过程非常有利于思维的条理性锻炼。总之,对待案例千万不能生搬硬套,要举一反三。

故障诊断方法综述范文6

关键词:[HTSS]供电设备;状态检修;专家系统;人工神经元网络?

状态检修方式以设备当前的实际工作状况为依据,它通过先进的状态监测和诊断手段、可靠性评价手段以及寿命预测手段,判断设备的状态,识别故障的早期征兆,对故障部位其及严重程度、故障发展趋势做出判断,并根据分析诊断结果,在设备性能下降到一定程度或故障将要发生之前主动实施维修[1]。它为电气设备安全、稳定、长周期、全性能、优质运行提供了可靠的技术和管理保障。?

作到状态检修的关键是对设备状态的判断,不仅要识别已经发生的故障,而且预测未来可能发生的故障。解决这些问题,一些常规的计算程序和分析程序无能为力或不够有效。因为在这些问题中,人类专家的经验起着主导作用。因此,专家系统技术已经运用到电力设备状态检修中,特别是发电设备的状态检修。而专家系统技术用于供电设备的状态检修还不多见。原因在于供电设备的状态检修起步比较晚,这与早年实行“重发轻供不管用”的政策有关。当前电力企业深化改革,以利润为中心,实行内部模拟电力市场,促使供电企业努力提高供电可靠率和检修的经济性。因此供电设备的状态检修势在必行。?

状态检修能够使检修和管理效率提高,设备大修间隔延长和小修频率降低,杜绝不足维修和过剩维修,减少重大事故的发生,提高了设备的可用系数,从而降低了企业经营成本。?

1、配电设备状态检修决策支持系统的总体结构?

随着传感技术、微电子、数字信号处理和计算机网络技术在状态监测中的应用,使状态检修成为可能。而人工神经网络、专家系统、模糊集理论等综合智能技术在状态识别和故障诊断中的应用,使状态检修得以实现[2,3]。?

本系统根据在线和离线监测诊断数据、设备寿命预测数据、可靠性评价数据、设计参数、检修历史数据、同类设备统计数据等进行综合分析,并利用状态评价准则体系对设备状态变化趋势进行预测,运用决策模型给出检修什么和何时检修的建议,并制定检修计划,到企业网站。总体结构如图1所示。?

1.1设备综合管理模块?

状态检修需要大量描述设备状态及其演变过程的准确数据,即要有足够的信息用于分析与决策,这就是设备数据综合管理。该模块管理、存储所有设备资产清单,设备台帐图纸、设备设计数据、设备安装状况及系统图、维修历史数据、设备变更与维修记录、设备状态监测与诊断数据、事故及异常记录、测点设置、设备可靠性状态统计分析数据等等。?

1.2智能化诊断模块?

该模块用专家系统与人工神经元网络结合的方法实现。既能对单一试验数据进行故障诊断,也能对多种试验数据进行综合诊断。单一诊断用产生式专家系统,将规程规定和专家知识存储在知识库,可以随时更新、修改。综合诊断用人工神经元BP网络。功能模块之间用状态驱动。每一个层次的数据可以维护、查询,有利于程序的模块化设计[4,5]。?

1.3检修决策模块?

对单一设备,根据不同运行方式和检修方式,运用技术经济分析方法,对检修费用、效益进行评估,给出对该设备来说最佳检修时间、检修措施和检修项目,并形成检修决策报告。?

1.4编制检修计划模块?

状态检修并不排斥检修计划的作用,恰恰相反,状态检修体制还要利用一些先进的技术手段来动态地制订和优化供电设备检修计划,以充分发挥检修计划的指导作用。在状态检修体制下,面对众多需要检修的设备,检修计划的编制根据检修决策的结果,负荷预测、趋势分析、动态规则等手段考虑配网的运行方式、供电可靠性、经济性等要求,使检修计划既具有可行性,又具有科学性和经济性。

1.5企业网站检修信息模块?

将排定的检修计划在供电企业网站上,供生产单位执行,也为用户提供了检修信息,大用户据此安排生产,减少供电设备检修带来的损失。这能提供服务质量,增加供电工作的透明度。?

2、基于专家系统的单一诊断模块?

2.1单一诊断功能?

单一诊断是指对一种检测方法所取得的数据进行处理和判断,得出故障征兆或有关设备状态的初步结论。这些检测方法指:油中气体色谱检测、绕组直流电阻检测、绝缘电阻及吸收比、极化指数检测、绝缘介质损耗检测、油质检测和绝缘老化的检测等等。检测的数据与规程比、与历史比、与同类设备比,并考虑当前系统的运行状况,将这些知识保存在专家系统的规则库中。

?

通过各种方法检测到的数据,或通过检测数据计算出的数据,并不能说明当前设备的状况,只有与标准值比较,才能得到设备可能故障的征兆。如在变压器预防性试验中,绕组直流电阻MVA以下的变压器,相间差别是5%,与规程比较,规程规定一般不超过4%,所以得出绕组直流电阻相间差别过高的征兆。?

单一诊断是对单项试验数据进行诊断。该方法简单、宜于实现,有时可直接定位故障。但更多时给的结论不够清晰,或结论片面。因此,该过程可以看作综合诊断的前期数据处理[6]。?

单一诊断的结果可能有四种:

1)明确定位故障;

2)参数正常,不存在与此参数有关的故障;

3)不确定故障是否存在;

4)故障确实存在,但不能定位。后两种情况给出的结果不明确,需要更多的信息进行明确判断,由综合诊断来完成。但单一诊断的所有诊断结果都送到综合数据库里。在综合诊断中,对四种结论的处理各不相同。

单一诊断的过程是:

(1)数据采集:采集定期或不定期的试验数据;?

(2)参数计算:有些参数据不能直接测得,需要用试验数据计算得到。

(3)参数换算:有时要把试验数据或参数换算成某一环境下的数据;?

(4)数据比较:试验数据或换算后的数据与规程规定的标准试验数据比较,与设备原始数据比较;?

(5)得出结论:单一诊断的结论是上述的四种结论。如果不需综合诊断,则可以直接生成诊断报告。?

2.2专家系统各模块的功能?

单一诊断功能由专家系统实现,该专家系统的模块如下:?

(1)数据库:数据来源于设备综合管理模块。该库需要的数据有:设备工况数据,设备设计参数,设备缺陷与检修历史数据,事故记录,同类设备统计数据;?

(2)知识库:该库包括故障诊断知识和设备状态预测知识。包含有设备的有关标准、规程、导则和有关设备性能指标的资料,以及收集的国内外诸多专家分析判断设备故障的权威经验,用产生式知识表示法表示知识;?

(3)推理机:能进行故障诊断和设备状态预测,并设置监控预警功能,发现设备缺陷,向运行值班和检修负责人发出警报。考虑到供电设备故障的特点:有时是一种故障引起多个征兆;有时是一种征兆是由多个故障引起的,因此推理方式采用混合推理;?

(4)学习机:随着标准、规程及导则中有关内容的变化,经验不断积累和增加。诊断知识库要随时扩充、修改、更新,增强专家系统的诊断、决策能力。因此,要求学习机有很强的自学习功能。自学习包括三个方面的内容:

①就诊断对象的功能状态去识别系统未曾掌握的征兆,并形成新的知识;

②有新的设备时,能够学习新设备的故障征兆和判断设备状态的规则;

③对知识的自行校正,如一致性检验、冗余检验等。?

3、基于神经元网络的综合诊断模块?

神经网络是对人脑神经系统的数学模拟,其目的是学习和模仿人脑的信息处理方式。神经网络把知识变成网络的权值和阀值,并分布存储在整个神经网络之中。在确定了神经网络的结构参数、神经元特性和学习算法之后,神经网络的知识表达是与它的知识获取过程同时进行、同时完成的。当训练结束时,神经网络系统所获取的知识就表达为网络权值矩阵和阀值矩阵。神经网络具有知识容量大,处理的问题范围广,推理速度快等优势。所以综合诊断是运用人工神经元网络在故障征兆与故障位置之间建立起数学模型,将综合诊断知识存储在网络的权值和阀值里。采用BP网络进行模型。故障征兆是输入层的X1,X2,X3,XL;输出层的Y1,Y2,Y3,YN是具体的故障。这里的故障征兆就是单一诊断的结论。

4、结束语

供电设备状态检修决策支持系统中设备状态诊断是关键,不仅能对已经发生的故障做出诊断,还能对将要发生的故障进行预测,这样才能根据状态进行检修。自学习功能,增加了该系统的灵活性,随着经验的积累,知识库的日益丰富,状态诊断的可靠性将日益提高。?

状态检修离不开状态检测技术,供电设备的状态监测已经有许多的方法,如直流电阻测量,油色谱分析,绝缘性能测试,远红外测温,有载调压开关特性测试等。随着这些监测手段的日益完善,监测点逐渐增多,监测设备的功能强大,通过先进的通讯手段和计算机网络化管理,状态检修系统就更为健全。?

从电力行业发展看,供电设备状态检修代替定期检修是必然的,但要有一段很长的过渡过程,在这期间,可能两种检修方式并存。做到真正的状态检修,仅有技术支持系统是不够的,还需要管理工作的配合、加强检修人员的培训等。?

参考文献

[1]杨叔子,郑晓军。人工职能与诊断专家系统[M]。西安交通大学出版社,1990.?

[2]许婧,王晶,高峰,束洪春。电力设备状态检修技术研究综述[J]。电网技术,2000(8)。?

[3]白建青。供电设备从定期维修制向状态检修制过渡[J]。青海电力,1998(4)。?

[4]尤钟晓,卢章辉,岑文辉。面向对象的电力系统调度操作专家系统[J]。电力系统自动化,1999(1)。?

故障诊断方法综述范文7

关键词:系统;故障诊断;算法

作者简介:王芳(1974-),女,浙江诸暨人,浙江省绍兴电力局,工程师。(浙江 绍兴 312000)

中图分类号:TM73 文献标识码:A 文章编号:1007-0079(2013)33-0239-02

一套完整的监控(监控和数据采集,SCADA)系统与警报讯号处理(报警处理)系统,将有助于提升调度人员处理事故的能力,能够根据系统的情况明确指示引起异常之原因,提供必要的解决措施。近年来,人工智慧(人工智能)方法已被广泛应用于电力工程领域,国内外对于故障区域估测(故障区段估计),变压器故障诊断(变压器故障诊断),警报处理(报警处理)及谐波侦测(谐波检测)等领域所提方法,大致可归纳为下列几种。

一、专家系统

专家系统的创始人费根鲍姆认为:专家系统是一套智能化软件系统,利用理论及推理步骤来完成以前只有行业专家方能解决的复杂问题。专家系统建立的主要目标是利用具有特定领域问题解决能力的专家系统,为非专家解决现场复杂的问题提供支持和帮助。人工智能是专家系统中最活跃同时也是成果最丰富的一个研究领域。

专家系统在输电和配电网络故障诊断中的典型应用是以生产规则为基础的系统,即保护断路器操作人员的行动逻辑和诊断经验排除这一可能性,形成故障诊断专家系统知识库,进一步在信息知识基础上根据报警进行故障排除的结论的推理。

实际应用中,如美国电力公司依赖与得克萨斯州农工大学共同开发的电源系统管理专家系统(雷莱恩专家系统)、数字故障录波(DFR)这个专家系统,根据DFR数据故障诊断扰动。 DFR可以记录在系统故障期间的系统参数,如雷电和操作冲击电压突然上升或骤降、供电中断、过电压、欠电压、谐波和瞬态等引起的故障参数。

传统的方法是失败的DFR开始自动记录并存储相关数据,保护工作进行离线分析,以评估该系统的保护作用。雷莱恩专家系统可以免除上述过程,分析故障录波数据和自动提取撰写报告,然后通过传真或E-mail发送到系统的时间表或相关人员。

虽然专家系统可以有效地模拟专家完成故障排除,但在实践中仍存在一些不足之处,主要问题是知识获取的瓶颈问题,知识是难以维持的,并不能有效解决众多不明朗因素的故障诊断,这些问题极大地影响了故障诊断的准确性。[1]

二、模糊逻辑(模糊逻辑)

模糊集合观念常用于处理因语言及智识上产生不明确性特质的事物上,模糊集合论可视为明确集合论的延伸,弥补二值逻辑(非0即1)无法对不明确边界事物描述的缺点,经归属函数来表示集合元素对该集合的隶属程度,然后由模糊规则库推论其结果。此法必须先从问题描述来定义归属函数,亦需设计出严谨有效的推论规则。多应用于警报讯号处理、变压器故障诊断。

三、遗传算法的基因演算法(GA)

基因遗传演算法是一种模拟人类基因演化的模型,在这种模型中,问题的解答被巧妙地安排成一串数值,模拟基因中的一串染色体,大量的基因经过演化、突变与等运算不停地产生新的基因,且淘汰不良的基因,最后演化出问题的最佳解答。多应用于电力系统故障诊断、主动式滤波器规划。[2]

四、搜寻法(禁忌搜索TS)

搜寻法为求得整体最佳解,主要特色系利用来控制求解过程。多应用于警报讯号处理。

五、决策树搜寻法(决策树搜索)

将欲达成的策略以决策树型式表示,再应用搜寻技巧寻找适当的策略。多应用于故障诊断。

六、因果网路(因果网络,CEN)

因果网路具有平行处理的推论能力,主要特色系使用并行处理的推论机制,可得到快速的推论结果。多应用于故障诊断。

七、神经网络

神经网络具备高度神经计算能力和极强的自适应性、鲁棒性和容错性。用神经网络处理问题只需要进行简单的非线性函数的数次复合,不需要建立任何物理模型和人工干预,具有自组织、自学习能力,能映射高度非线性的输入输出关系,重新观察现象之后判断输出。神经网络法在故障诊断中得到高度重视和广泛应用,它在处理不确定性问题时具有独特的优势。人工神经网络广泛用于选线、故障判断、暂态保护等,速度快、准确度高,并且不受制于系统的运行模式、互感器饱和、故障类型等因素。用来进行保护无线通讯,可以对故障高频信号进行提取,具有很好的仿真效果;还在雷电信号、开关信号和故障行波的识别中有着广泛的应用。

神经网络方法虽然有利于克服专家系统获取信息的瓶颈、维护信息库困难等众多问题,但其在处理启发性知识方面有着局限性。且因为ANN技术本身的缺陷,其学习速度不快,需要长时间的训练,解释能力弱,进而对神经网络实用化产生了影响。并且怎样设计与大型输电网络相适应的ANN故障诊断系统,还是一个需要持续研究的课题。

类神经网络的性质具有大量平行处理能力、学习及记忆功能,应用的领域相当广泛,可藉由不同的网络结构及学习演算法相结合,以适用于解决特殊的问题、如文字辨识,语音辨识、影像压缩、预测及诊断等。应用前必须慎选适用的领域。多应用于故障诊断、警报讯号处理、变压器故障诊断、谐波侦测。[3]

八、基于柔性SCADA的电网复杂故障诊断方法

电网故障分为简单和复杂的故障,而绝大多数是简单故障。对于简单的故障诊断方法,只使用第一层的推理,从而避免了使用保护、防护等级和其他二级报警信息的类型,降低了模型的复杂性,提高推理的速度,有利于故障在线诊断应用。对于复杂的故障,使用Petri网推理模型,并引入WAMS数据核实诊断结果,以提高诊断结果的准确性。给出网格基础上灵活的SCADA复杂故障诊断系统的设计:

(1)利用灵活的SCADA报警信息,实现了分层分级传输和利用,以避免电网故障的交互功能、报警信息丢失导致拥塞故障排除错误。推理采用分层结构,第一层采用专家系统推理,第二层使用Petri网模型的推理。

(2)对于报警信息不完全正确的现象,提出了应用组件的配置时间Petri网保护的报警信息纠错处理的方法来提高容错。参考WAMS数据、报警信息和故障诊断纠错处理结果验证结果的方法,以提高故障诊断的可靠性。[4]

九、计及信息畸变影响的电网故障诊断分级优化方法

目前的电力系统故障诊断领域一直在进行更深入的研究。基于优化算法的故障诊断方法,因为推理简单而搜索快速,被广泛应用。

在优化算法的基础上,分析基于相似的故障诊断方法可以概括为覆盖的诊断方法和诊断方法。当保护或断路器不正常运行和警报信息是扭曲的,诊断的相似性可能被漏诊、误诊。为了提高故障诊断的准确性,其结合了两种类型诊断方法的故障诊断建议分类优化方法的特点。此方法诊断相似的保护信息和一个诊断结果,通过简单的操作分析不同类型的可疑故障组件的失效概率。对于现有的方法造成报警状态计算密集型优化问题的特征向量、状态向量构造自适应功能的报警方法。建立各类变量模型中的简单方案,以进一步推进快速诊断故障区域的研究。

十、复合方法

结合两种不同的人工智慧方法,选取各个方法的优点再将其结合,主要目的是增加其适用范围及提高诊断准确度,如结合CEN和模糊理论,以CEN判断故障区域后再由模糊逻辑推论出故障类型,使得诊断工具的适用范围扩大。诊断流程采用人工神经网络与EPS同时平行运作,在相互结合下拥有较高的诊断精确度;结合小波理论和ANN用于变压器故障诊断经济调度及暂态干扰事件侦测。[5]

十一、总结和展望

本文对几种广泛应用的电力故障诊断方法进行了详细的阐述,然而随着电力的发展和环境的变化,新故障不断出现,其给现有的诊断方法带来了挑战。因此,为了应对不断出现的故障,灵活综合各种基本方法来进行诊断成为电力系统故障诊断技术的发展趋势。

为了维持电力供应安全性及可靠性,自动化故障侦测技术将有助于迅速推测出故障可能发生的位置,在供电品质提升的需求下,变压器的维护与检修更为重要,对于运转中的变压器若有一套监视与诊断预警技术,将可发现变压器内部潜在的异常状况,及早进行修复以避免事故进一步扩大。电力品质亦是当前电力公司与工业界共同重视的课题,若有一套电力品质干扰事件侦测系统,将可辅助电力品质工程师形成有效的辨识及采取有效的改善策略。本文主要目的即建立一套辅侦测工具,包括故障区域侦测、警报讯号处理、变压器故障诊断及电力品质侦测,期望可在不用增加任何设备的情况下纳入既有的监控系统。

参考文献:

[1]郑文盛.故障诊断专家系统在船舶电力系统故障诊断中的应用[J].中国水运,2010,(4):88-89.

[2]吕雪峰.基于遗传算法的电力系统故障诊断[D].大庆:大庆石油学院,2006.

[3]邵晓非,宁媛,刘耀文,张慧莹.电力系统故障诊断方法综述与展望[J].工业控制计算机,2012,(12):4-5,7.

故障诊断方法综述范文8

关键词:汽轮机 故障诊断 小波 神经网络

1、引言

二十世纪以来,随着工业生产和科学技术的发展,机械故障的可靠性、可用性、可维护性与安全性问题日益突出,从而促进了人们对机械设备故障机理及诊断技术的研究汽轮机是电力生产的重要设备,由于其结构的复杂性和运行环的特殊性,汽轮机的故障率较高,而却故障危害也很大。汽轮发电机组常见的机械振动故障有:转子不平衡、转子弯曲、转子不对中、油膜振荡、碰摩、转子横向裂纹和转子支承系统松动等。汽轮机振动故障的汽轮机最常见的故障,因此,汽轮机的振动故障诊断一直是故障诊断技术应用中非常重要的部分。

2、基于信号处理的振动故障诊断方法

信息的采集和处理是实现机组振动检测与故障诊断中的一个基本环节、也是振动检测软件的核心技术。现代信息分析主要包括两种形式:一种是以计算机为核心的专用数字式信号处理仪器,另一种是采用通用计算软件来进行信号分析的方式。

2.1小波变换方法

这是一种新的信号处理方法,是一种时间―尺度分析方法,具有多分辨率分析的特点。利用小波变换可以检测信号的奇异性。因噪声的小波变换的模的极大值随着尺度的增大而迅速衰减,而小波变换在突变点的模的极大值随着尺度的增大而增大(或由于噪声的影响而缓慢衰减),即噪声的Lipschitz指数处处小于零,而在信号突变点的Lipschitz指数大于零(或由于噪声的影响而等于模很小的负数),所以可以用连续小波变换区分信号突变和噪声。同样,离散小波变换可以检测随机信号频率的突变。孙燕平等应用了小波分析理论,采用多分辨分析和小波分解等基本思想对汽轮机转子振动信号进行了分析,针对振动信号的弱信号特征,提出了基于离散小波细化频率区间,小波分解后进行能量谱分析和小波变换结合傅立业变换分析法,并将其应用于模拟转子试验台上。闫亮以小波分析为基础,针对汽轮机早期振动故障信号具有背景噪声强,特征信号弱的特点改进传统的Donoho硬阈值降噪算法,提出了基于shannon熵的最优小波包基降噪算法,能明显地提高信号的信噪比。采用小波神经网络松散结合的诊断方法,利用小波包的分解重构系数得到信号的频带能量,再将频带能量作为神经网络输入向量进行模式识别。利用BP神经网络在故障诊断方面具有诊断精度高,学习速度快的特点与小波分析相结合。

小波神经网络是一种非模型的诊断方法,回避了抽取对象数学模型的难点,避免了复杂的关于建模的传递函数的运算,以及建模不完全或不精确导致的诊断误差。小波变换不需要系统的数学模型,对噪声有很强的抑制能力,有较高的灵敏度,运算量也不大,是一种很有前途的方法。

2.2信息融合的方法

信息融合是利用计算机技术对按时序获得的多源的观测信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。

张燕平设计了汽轮机转子轴系故障模拟试验方案,并对各种故障进行了多组升速试验,对故障信号进行了傅立叶分析,以三维幅值谱和升速过程波德图为工具,对故障信号的频域信息进行了融合研究。研究表明,一阶矩向量三维图不仅融合了信号的时频特征,还融合了信号的空间特征,因而可用来对故障的产生过程进行全面分析,是进行轴系典型故障诊断的又一有效工具。

2.3其他信息处理法

N.E.Huang等提出了一种经验模态分解方法(EMD),其主旨为把一个时间序列的信号分解成不同尺度的本征模态函数(IMF),每个本征模态函数序列都是单组分的,相当于序列的每一点只有一个瞬时频率,无其他频率组分的叠加。瞬时频率是通过对IMF进行希尔伯特变换得到,同时求得振幅,最后求得振幅频率时间的三维谱分布。唐贵基等利用EMD分析方法以及其对应的Hilbert变换在大型汽轮机故障诊断中进行非平稳信号的算法和应用,并描绘出仿真故障信号的时频图、时频谱和幅值谱。姚志宏嘲利用Kohonen网络聚类的特点,把汽轮机振动故障信号频谱中的相关频段上不同频率谱的谱峰能量值作为故障信号的训练样本输入到Kohonen网络,并由网络进行聚类,产生聚类中心点。根据此聚类中心点的位置来确认和诊断汽轮机振动故障的原因以及目前的严重程度。

3、基于知识的故障诊断方法

基于知识的方法不需要精确的数学模型就能准确预测故障,当前这一领域的研究较为活跃。

3.1基于专家系统的故障诊断方法

专家系统(Expert System――ES)是人工智能领域较为活跃的一支,它已广泛应用于过程监测系统,并取得了相当可观的经济效益。专家系统是一种基于知识的智能计算机程序系统,其运用领域专多年积累的经验与专门知识,模拟人类专家的思维过程来处理该领域的问题。张晓等提出了一种新的基于模糊与综合的离线式汽轮机故障诊断专家系统,并且提出了相关基于模糊诊断的推理和专家系统知识的漏诊断和无诊断的自学习方法。

3.2基于人工神经网络的故障诊断方法

人工神经网络技术以分布的方式存储信息,利用网络的拓扑结构和权值分布实现非线性的映射,并利用全局并行处理实现从输入空间到输出空间的非线性信息变换。对于某一特定对象建立特定的神经网络故障诊断系统,将故障征兆作为输入信号可以直接得到故障,方便地实现了故障检测与诊断。

张建华等提出了采用概率神经网络(PNN)的汽轮发电机组故障诊断方法。利用PNN算法简单、训练和泛化速度快的优点,把新的训练样本添加到以前训练好的分类器中,便于提高故障诊断结果的准确性。而且具有很高的运算速度,抗干扰能力强,对传感器测量噪声具有较强的诊断鲁棒性。新的训练样本也很容易加入以前训练好的分类器中,更适用于在线检测。程卫国翻通过对振动信号的分析,并对BP算法进行了研究和改进。刘正亮建立了人工鱼群神经网络模型,利用人工鱼的聚群、追尾和觅食行为训练RBF神经网络的权系数,提高了神经网络的收敛速度和精度。依据此模型提出一种故障诊断方法,并应用于汽轮机振动故障分析,提高了神经网络的泛化能力和故障诊断的准确率。

4、基于解析模型的故障诊断方法

基于解析模型的故障检测和诊断方法在故障诊断的研究中占有重要地位,它充分利用了系统模型的深层知识进行故障诊断,具体是指使用系统的结构、行为和功能等方面的知识对系统进行诊断推理,这就需要建立系统结构、行为和功能模型。

荆建平等针对转子裂纹故障的早期诊断与预示这一问题,提出了基于多模型估计(MMAE)的转子裂纹故障诊断方法。并对Jeffcott转子建立了正常、裂纹转子模型和基于卡尔曼滤波器的多模

型自适应估计器,通过裂纹故障的仿真分析和故障多模型估计表明,该方法对早期诊断和预示转子裂纹故障有良好的效果。张国平针对汽轮机启动和停止过程信号比平稳过程复杂这一特点用短时傅里叶变换提取状态特征信息,引入基于连续HMM建立在在线状态监测系统的应用。HMM是一种时间序列的统计模型,能用参数描述随机过程统计特性的概率模型,是一种用针对性的信号的建模和识别工具。韩璞等㈣利用了贝叶斯网络模型进行汽轮机故障诊断,通过对主成分分析方法提取故障特征的讨论,提出了基于主成分分析方法和贝叶斯网络的汽轮机故障诊断模型建立方法,应用特征提取后的样本建立了汽轮机故障贝叶斯网络模型,该汽轮机故障诊断模型简洁,易于推理,提高了汽轮机故障诊断的效率。

基于解析模型的故障诊断方法主要用于控制系统的故障诊断。因为其它诊断方法多以直接检测信号的分析为诊断依据,而控制系统的输出信号常常随着控制输入信号的变化而变化。这样,用直接信号检测分析方法往往难以甄别一个异常的信号是由于系统故障所致,还是由于控制输入信号使然。而基于解析模型的故障诊断方法将系统的模型和实际系统冗余运行,通过对比产生的残差信号,就有效地剔除了控制信号对系统的影响因素。通过对残差信号的分析,就可以诊断系统运行过程中出现的故障。

5、基于离散事件的故障诊断方法

离散事件模型的状态既反映正常状态,又反映系统的故障状态。系统的故障事件构成整个事件集合的一个子集。故障诊断就是确定系统是否处于故障状态和是否发生了故障事件。

彭希等针对常规频谱诊断方法的不足,论述了离散的BAM(双向联想记忆)网络及其特性。讨论了汽轮发电机组常见典型振动故障的变化特征及其数字化描述方法,构建了离散BAM网络能够实现汽轮机振动故障特征空间到故障标示空间的联想和追忆映射,用BAM网络建立模型诊断汽轮机组振动故障。离散BAM神经网络是继Hopfield网络之后另一类典型的反馈形网络,是一种能进行寻址记忆的二层相关网络,使用前向和后向信息对存储内容激发联想和回忆,其具有良好的动力学行为而用于联想记忆。

陈长征等在分析了汽轮机振动故障特点的基础上,提出了用遗传算法进行汽轮机故障诊断问题,定义了遗传算法求解故障诊断问题的概率因果网络,建立了汽轮机故障诊断模型,该模型能有效地识别出汽轮机的多故障。

故障诊断方法综述范文9

【关键词】信息融合;BP神经网络;D-S证据理论

1.引言

在发电机故障诊断中,故障多种多样,而每种故障信息之间又存在着冗余性和相关性,针对某一个故障信息进行分析已满足不了对故障分析的可靠性。目前还没有哪种单一传感器对被测对象的状态进行完全可靠的描述,所以采用多传感器进行综合的诊断,已成为当前的趋势。

采用多传感器进行测量师,由于测得信息量很大,各测点提取的故障征兆必然存在着随机性和矛盾性。若将大量的高维信息输入同一个神经网络处理的话,必然会导致诊断时间过长,效果变差等失真结果。为避免这种情况出现,提出了BP神经网络和D-S证据理论结合的综合诊断方法。首先对个测点的信号进行神经网络的局部诊断,这就将所测得高维信息分解成了低维的信息,而后将各神经网络局部诊断结果利用D-S理论进行决策级融合,最终得到综合的诊断结果。

2.数据融合的发电机故障诊断模型

本文利用BP神经网络和D-S理论对发电机进行综合的故障诊断,首先将个测点的信号进行BP神经网络局部诊断,对所有的局部诊断数据进行归一化,并对其进行决策级的D-S理论融合,得到准确的故障信息。

具体方法如下:

假设在故障征兆域S中,对应第一通道神经网络的结果,对应第二通道神经网络的结果,以此类推,每个信任函数的焦点元素都对应不同神经网络目标诊断结果,所有诊断结果构成辨别框架,对每个通道的神经网络输出值进行归一化处理,作为各焦点元素的基本概率分配,其中n作为通道数,p为故障模式分类数,即焦元数,最后利用D-S理论的证据联合规则得到最终结果。如图1所示。

3.BP神经网络局部诊断

本文采用BP神经网络对发电机先进行局部的诊断,根据从各测量的数据信息利用BP神经网络逐个对其进行诊断,并进行归一化处理,从而判断故障情况。在进行局部诊断时,为了使相同数据间具有可比性,对采集的数据信息进归一化处理,归一化公式如下:

其中:表示归一化数据,表示第个数据,表示中的最大最小值。

神经网络的结构确定一个含有33个神经元的三层网络,每个层的个数为10,18和5。创建符合要求的BP神经网络:

令P表示网络输入样本向量,T表示网络的目标向量

创建该BP神经网络的程序为:

td=[0 1;0 l;0 l;0 1;0 1;0 1;0 1;0 1;0 1;0 l;0 l;0 l;0 1];

net=newff(td,[18,5],{'tang','logsig','trainlm'{'tansig','logsig'},'trainlm')

训练网络的程序为:

net.trainParam.epochs=1000;%训练次数为1000

net.trainParam.goal=0.01;%训练目标为0.01

L.plr=0.1; %学习速率为0.1

Net=train(net,P,T)

该网络训练结果为:

TRAINLM,Epoch 0/1000,MSE 0.427518/0.01,Gradient 3.54487/le一010

TRAINLM,Epoch 4/1000,MSE 0.00105968/0.01,Gradient 0.115357/le一010

TRAINLM,Performance goal met.

4.D-S证据理论决策融合诊断

本文中将BP神经网络的局部诊断结果转化为证据理论模型,

设信任函数对应第测点的判断结果,5个信任函数的焦点元素都是,这些不同的故障模式构成了分辨框,即有共同的分辨框。

将神经网络的训练误差作为不确定因素,将网络节点的输出作归一化处理,作为各焦点元素的基本概率值,计算公式为:

表示故障模式,;表示BP网络的结果,,

为网络的样本误差,,tjn,yjn分别对应第个神经元的期望值和实际值。

由于中状态相互独立,所以有:

,第一次的局部诊断数据排成横排,第二次的数据成竖排,再用D-S合并规则计算表中的各栏,可以得到其融合的结果;用融合的结果再与第三次局部诊断数据融合,即可得最终的结果,如表1,2所示。

从表2可以看出,经过数据融合的结果与理想目标输出比较接近,误差满足实际需求,从而证明了BP神经网络和D-S理论综合诊断方法的实效性。

5.结论

针对多传感器数据融合发电机故障特点,提出了将神经网络和D-S证据理论相结合的综合诊断思路,设计了诊断模型,利用BP神经网络进行局部诊断,然后采用D-S证据理论对局部诊断进行决策级融合,得到的结果基本满足实际需求,证明BP神经网络和D-S证据理论相结合的发电机故障综合诊断方法的实效性。

参考文献

[1]郝红勋.人工神经网络在航空发电机故障诊断中的应用[J].2006,03,18.

[2]王江萍.神经网络信息融合技术在故障诊断中的应用[J].石油机械,29,8:27-30.

[3]刘怀国,吴陈,张冰.D-S证据理论在多传感器数据融合中的应用[J].华东船舶工业学院学报,200l,15,3:20-25.