HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

智能制造技术分析集锦9篇

时间:2023-08-01 17:08:04

智能制造技术分析

智能制造技术分析范文1

关键词:智能制造技术;人工智能技术;智能制造业;基本介绍;应用

中图分类号:TP273 文献标识码:A 文章编号:1671-2064(2017)09-0025-01

1 人工智能技术的基本介绍

1.1 概念

网络信息技术与计算机技术等等众多学科的技术进行有效的融合,并且对于人类进行智能模拟,最终对于机械或者是其它领域进行智能化与自动化的控制,这种技术就是人工智能技术。随着时代的发展,人工智能技术具有重要的价值。比如:对于机械等进行智能化控制,可以在遗传编程、信息图像、语言等各个方面进行应用。

1.2 特点

人工智能技术具有以下方面的特点。第一,性价比高。我们以智能制造业为例子进行具体说明。智能制造业一方面在运行中需要对于大量的数据信息等进行计算,分析等工作,另一方面需要对于运行的过程进行有效化监控。应用以往的方式需要花费大量的成本。而应用人工智能后,需要应用较小的成本,就能实现智能化控制与分析。第二,具有可靠性的特点。人工智能是在网络信息技术、计算机技术等为基础形成的新型高端技术类型,可以在全过程控制中保障智能制造业的安全。第三,具有可操作性的特点。光纤、电缆、网络信息、计算机等众多领域的进步与发展,为人工智能的应用提供了强大的技术支持,有利于其进步与发展。

2 人工智能技术在智能制造业中的应用

2.1 对于自动化控制流程的简化

在智能制造业中进行产品的生产操作比一般产品要复杂,尤其是对于操作流程的控制具有非常高的要求。而应用人工智能技术之后,有关的操作人员只需要应用网络操作智能控制系统就可以实现对于操作平台的全过程智能自动控制,一方面保障了产品的质量与安全,另一方面使得系统对于可能出现的故障进行提前判断,进行必要的安全规范处理。如图1所示。

2.2 对事故和故障的及时处理

人工智能在智能制造业中进行应用,可以对于事故和一些故障进行及时的预防和处理,最终保障智能制造业产品的质量和安全。这种应用方式的特点在于,有效的弥补了传统监测技术中存在的缺点和不足,建立起了动态化的监测网络系统,对其生产中的状态进行实时监控,对其质量的功能进行了有效的保障。除此之外,我们应用智能技术中的模糊理论可以建立起有效的刀具状态识别模型,建立起有效的监控参数和刀具状态之间的模糊关系,对于我们今后对于智能化制造技术的应用有重要的启示。但是,这种应用还存在一些问题。因此,我们需要在今后的应用中对于这种方式进行有效的改进,提高其应用的质量和水平,全面提高刀具监控的水平,提高智能制造业的质量,实现其良好的经济效益和社会价值。

2.3 对产品设计的优化

以往的制造业设计中需要进行大量的实验,设计出众多的样品,一方面花费了大量的时间、经历、金钱,最终成型的产品也不一定达到令人满意的程度。而将人工智能技术在制造业设计中进行有效的应用,其可以对于设计工作建立起网络化信息模型,并且对于设计出的产品在网络上进行生产过程应用仿真,有效了解设计出的产品具有怎样的缺点和不足,在网络模型平台中进行有效改进,再次进行应用生产过程仿真,大大提高产品设计的质量与水平,还节省了大量的时间与金钱,对于产品进行了优化设计。

3 结语

对于人工智能与制造自动化技术的挑战问题进行分析与研究,有利于我们了解人工智能发展的趋势与应用实践情况,最终可以在今后生a中有效应用这项技术,促进我国经济的发展与社会的进步。

参考文献

[1]纪.人工智能技术在电气自动化控制中的应用思路分析[J].电子测试,2014(03):137-138.

[2]任博.人工智能技术在电气自动化控制中的应用思路分析[J].科技视界,2015(09):108-109.

[3]王涛.人工智能技术在电气自动化控制中的应用探讨[J].电子技术与软件工程,2015(11):261.

智能制造技术分析范文2

关键词:机电一体化 智能制造 应用

中图分类号:TH-39 文献标识码:A 文章编号:1672-3791(2015)05(b)-0092-02

机电一体化又称为机械电子学,随着科学技术的进步和经济的迅速发展,机电一体化技术在生产中逐步的得到了广泛的应用,尤其是在市场经济下竞争激烈的今天,机电一体化技术成为了工业生产的强劲动力,机电一体化技术将电子与机械进行紧密的集合,从而实现了人们对机械设备的智能化管理,新世纪的制造必然是智能制造。智能制造包含两重含义,即智能制造系统和智能制造技术,在目前的工业企业生产过程中,智能制造已经成为了制造业的主流,智能制造通过计算机模拟人脑,对制造过程中的各个环节进行分析、推理、判断以及进行生产的决策,从而实现整个企业生产过程的智能化以及高度人性化,以电脑的模拟分析代表人脑的分析过程,对生产过程进行准确的控制。该文介绍目前机电一体化技术的发展现状以及智能制造的概念,着重说明智能一体化技术在智能制造中的应用,希望对读者有所帮助。

1 机电一体化技术发展的现状

机电一体化技术是电子技术和机械技术的集合。机电一体化技术在20世纪60年代初步形成,这种技术的出现是为了满足工业生产的需要,在发展的最初阶段是通过电子手段对机械设备进行控制,提升企业的生产效率。最初的机电一体化技术十分简单,技术含量也不高,智能适用于简单小型设备的生产。经过几十年的发展,机电一体化技术已经逐步的融合了计算机技术的精华和微处理技术的精髓,尤其是进入21世纪以来,机电一体化技术又和信息技术以及电子技术等高新技术融合,模拟人脑对生产过程进行分析和判断,使生产逐步的智能化。

如今的机电一体化技术,尤其是在一些大型企业的生产过程中,涵盖了机械技术、电子技术、控制技术、计算机技术、声学技术、光学技术等。机电一体化技术的发展依赖众多科学技术的发展,机电一体化的发展是为了适合生产的实际需要,机电一体化技术将更加的智能化、模块化和网络化。机电一体化技术能够高度的模拟人脑,对整个的生产过程进行分析和判断,发出各种操作指令,完成复杂的生产,对生产所用的机械设备进行智能控制,整个生产的过程也十分的人性化,电脑代替人脑进行控制大大的减轻了人们工作的负担。目前,随着经济全球化进程的不断推进,工业生产已经不仅仅局限于某个区域,而是就地取材,遍布世界的各个角落,因此,机电一体化技术也有了新的含义,远程控制技术以及远程监视技术也在渐渐的被应用到机电一体化技术中来,机电一体化技术的发展是随着科学技术的发展和生产的需要而不断发展的,机电一体化技术有着广阔的发展空间。机电一体化技术的发展也势必会使企业打破自有的生产模式,逐步的实现模块化集成机电生产,统一机电产品的部分标准,规范生产过程,提升产品质量。

2 智能制造技术及其发展

随着科学技术的迅速发展,机械制造技术也不再拘泥于陈旧的生产模式,科学技术赋予了机械制造新的活力,机械制造技术正在逐渐的吸取各种技术的精华,实现自身的改革和进步。现如今,生产逐步的实现机械化,人们对于机械设备的需求不断加剧,为了满足这种需求,人们不断的研究新的技术提升机械生产效率。智能制造技术是目前机械制造技术的主流,智能制造技术是使机械设备自主驱动并且自主的控制机械设备的元件,实现机械设备系统控制的智能化,智能制造也必然是机械制造的主流趋势。智能制造能够储存大量的信息,能够有效的获取生产过程中的信息,能够对生产过程中出现的问题进行及时的处理,具有组织、学习、分析、优化、维护的功能。智能制造技术克服了传统制造中的诸多缺点,大幅度提升了产品的质量,提升了产品的合格率和科技含量。智能制造技术正在逐步的借助三维动态演示,模拟技术、计算机编程、多方向视图技术以及比例缩放等技术,对所要制造的产品进行设计和生产过程控制,使生产过程能够满足设计图纸的高精度需要。智能制造技术在大幅度提升制造效率的同时还能够实现人机的互动。

智能自造技术能够对产品的设计生产等各个环节进行有效的控制,减少了人工的劳动,解放了大量的劳动力,在劳动力紧缺和劳动力成本很高的今天,智能制造技术对于企业的生存和发展有着特殊的意义。另外,对于一些污染较重以及危险技术较高的生产制造单位而言,使用智能制造技术不失为最佳的选择,使用智能制造技术能够及时发现安全隐患,有利于企业的安全生产。一些具有特殊生产要求的企业必须使用智能制造技术以实现劳动工人无法实现的操作控制,智能制造技术的使用还在很大程度上减少了误差和人为失误的出现,提升了产品的质量和生产效率。

3 机电一体化技术在智能制造中的应用

智能制造技术随着生产的需要发展迅速,并在短短的十几年间广泛的应用到绝大多数的工业生产当中来。当前,机电一体化技术正在逐步的和智能制造技术进行结合,用以满足多样化的工业企业的生产需要,同时两种技术的有机结合也为两者的发展提供了更为广阔的发展空间。机电一体化技术在智能制造中的逐步应用必然会应用到一些核心的技术。传感技术就是其中的核心技术之一,传感技术如若应用到智能生产当中来必须要保证其准确性和灵敏性,并且保证传感器不被目标信号以外的其他信号所干扰,单纯的传感器是不行的,还要建立相应的传感器网络系统,传感器用于目标信号的收集,无线传感器网络实现信息的传输,通过计算机收集的信息进行分析和处理,最终达到对于整个生产过程的控制。就目前生产制造而言,主要采用的是非接触性的检测手段以及光纤电缆传感器,采用统一且标准化的接口,将设计的难度适当降低,主要开发成本较低的串行接口。

机械制造在国民经济中占有重要的地位,同时机械制造对于国家农业和工业的发展有着重要的意义,在我国,数控领域最早将机电一体化技术应用到智能制造中来,数控生产对于智能控制的要求非常高,其中还要涉及到模拟、信息处理等多种技术,在生产过程中,智能控制技术能够对无法进行建立模型的环节以及模糊的信心进行处理,优化整个生产过程的管理和控制。目前的数控机床主要采用多CPU和总主线的结构形式,通过在线诊断以及模糊智能控制技术,采用大型的储存设备、提升数控能力,提供二维和三维的仿真动态画面,对整个生产的过程实现多过程和多通道的控制。

自动机械和自动生产线也在智能制造中得到了很好的应用,其使用人机界面控制装置、光电控制系统以及可编程序控制装置等。机电一体化技术在智能制造中的极高体现表现为工业机器人的使用,工业机器人综合了人工智能、遥感技术、通讯技术、仿生学技术等,它可以对生产信息记性获取、识别和处理,工业机器人在目前工业生产中发挥着不可替代的作用。

4 结语

机电一体化技术技术的在智能制造中得到了极为广泛的应用,提升了以往低下的生产效率,革新了传统的生产模式,机电一体化技术在智能制造中广泛的应用是经济发展的结果,也是工业生产的需要,这种生产制造模式实现了技术的融合,提升了生产效率,推进了工业生产的革新。

参考文献

[1] 尚教廷.浅论机电一体化技术的发展趋势[J].中国科技纵横,2010(14):234.

[2] 雷雪银.试论机电一体化技术的发展趋势[J].沿海企业与科技,2007,(9):18-19.

[3] 傅运刚,陈维健.机电一体化应用技术基础[M].徐州:中国矿业大学出版社,1996:5-6.

智能制造技术分析范文3

大数据的广泛应用,必将带来工业企业的广泛创新和变革的新时代。这些创新和变革,将给全球工业带来革命性的变化,同时,改变企业的研发、生产、运营、营销和管理方式。

大数据可能带来的巨大价值正在被传统制造业所认可,它通过技术的创新与发展,为企业的管理者和参与者呈现出一个全新的看待制造业价值链的方法。

通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用,大数据可以进行大规模定制,能够实现智能制造,能够帮助制造业企业提升营销的针对性,能够实现降低物流和库存的成本,减少生产资源投入的风险。

设计环节:大规模定制

大数据、云计算、智能化技术是制造业升级的三大动力,不断推动着大规模制造向大规模定制转型。

《大数据时代》作者、数据科学家维克多・迈尔?舍恩伯格曾经预言,大数据下一波的改革是大规模定制,为大量客户定制产品和服务,成本低、又兼具个性化。大数据可以发挥关键作用,告诉商家每一个用户的消费倾向,以及需求之间的细分差异。这些数据量的增加,能够实现从量变到质变的转化过程。

大规模定制生产的基本思想是:将定制产品的生产问题通过产品重组和过程重组,运用现代信息技术、管 理技术及制造技术等一系列高新技术,把产品的定制生产问题全部或部分转化为批量生产,尽量减少定制零部件数和定制环节。从而以大批量生产的成本和速度,为顾客提供多样化、个性化的产品。

大数据在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,其核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。

消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,便能生产出符合个性化需求的定制产品。

大规模定制,为大量客户定制产品和服务,成本低、又兼具个性化。比如消费者希望他买的车有红色、绿色,厂商有能力满足要求,但价格又不至于像手工制作那般让人无法承担。因此,在厂家可以负担得起大规模定制带去的高成本的前提下,要真正做到个性化产品和服务,就必须对客户需求有很好的了解,这背后就需要依靠大数据技术。

工业化大规模个性化定制的关键之处在于生产流程的模块化和标准化。模块化、标准化的产品开发以工业化生产的成本实现了个性化定制产品的批量生产,是产品在品种与成本、性能之间找到最佳平衡点的突破口。

模块化设计是指把产品的结构设计成许多功能相互独立的模块,各模块可以容易地装配成不同形式的产品。因此,模块化设计把产品的多变性与零部件的标准化有效地结合起来,充分利用了规模经济和范围经济的效应。在产品设计中,模块化水平越高,定制产品中模块和零部件的标准化程度也越高。

互联网大数据信息时代的新技术、新思维,正在注入汽车市场,悄然对传统商业模式进行革新,使汽车工业朝着以“大数据”为驱动的“智能汽车工业”转变。在这种趋势下,以用户为中心、运用大数据的C2B智能化大规模定制,正是汽车智造的主要方向之一。

上汽大通响应上汽集团战略,从一家传统意义上的商用车公司,转型成为一家数字化C2B跨界车企,将C2B智能化大规模定制当作战略方向。上汽大通推出的一款C2B SUV D90,在上市前一年时间里,用户就可以参与车的定义、开发、认证、定价、配置、改进六大环节;不久前11月的广州车展,上汽大通推出了以C2B理念打造的“划时代皮卡”T60,这款产品不仅具有全球领先技术、澳洲A-NCAP五星碰撞安全、卓越驾乘体验、互联网智能体验的产品优势,并且具有“丰富个性定制”特征,用户可以根据自己爱好选择颜色、配置等,低配版可以选择高端配置,高配版也可以减少不想要的配置,不用为不想要的配置买单。

未来,上汽大通还将会邀请用户前往广德汽车试验场、黑河极寒环境、澳大利亚、川西、迪拜等世界各地,测试车辆的耐久性、动力总成性能匹配、机械完善度等,在现场,上汽大通会根据用户的反馈意见,调试工程样车,确认和优化匹配数据。在与用户不断深入沟通后,上汽大通的C2B汽车在车辆上市前就已经取得了“大订单”,截止到目前,上汽大通D90“盲订”车主已经超过5000人,体现出用户对上汽大通的信赖以及对C2B理念的认可。

未淼男畔⒒、网络化社会中,依靠大数据技术,工业生产将会实现大规模的个性定制,产能过剩不复存在,这将改变传统的规模化生产、标准化制造、低成本扩张的工业社会发展模板。工业文明因此将会从原来 的“物本”时代进入新的“人本”时代,这就是“新工业文明”。

生产环节:智能制造

大数据智能应用以数据挖掘分析为核心的应用和服务,为经济社会发展带来了深刻变革。大数据驱动智能制造加快发展,加快互联网与制造业快速融合,是传统制造业变革与升级的重要内容。

中国工程院院长周济认为,智能制造系统包含了三个不同层次:第一个层次是数字化制造,第二个层次是智能制造1.0系统。而未来真正意义上的智能制造,是智能制造2.0系统,它是人工智能技术在近几年发生了战略性、突破性进展,产生的第二代人工智能。但不管是哪个层次,它的根基都是工业大数据。

新一代人工智能技术称之为人工智能2.0技术,它实际上是新一代科技革命的变革和核心技术。它之所以可以实现这个突破,它的根基和关键也是工业大数据。

在“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。

现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声,每隔几秒就收集一次数据。利用这些数据,可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析等。比如,在生产工艺改进方面,使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会发出报警信号,快速地发现错误,解决问题。

生产线、生产设备都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时的监控。而生产所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使得工业控制和管理最优化,对有限资源进行最大限度的使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。

目前,大数据已经成为智慧制造云或者智能制造系统建设和运营的战略资源,它的作用使智慧制造云成为智慧化的基础。

大数据对于智慧制造系统,有多元符合模态,数据型的异构、类型异构,符合参数结合,高度实时性和不确定性等。智慧制造云大数据的价值,通过采集管理分析服务,能够精准高效智能促进云制造的智慧化,实现产品+服务为主导随时随地按需个性化、社会化的制造,提高企业的竞争能力。

其他环节:优化供应链、精准营销

利用相关大数据进行分析,将带来维修、仓储、配送、销售、售后服务效率的大幅提升和成本的大幅下降,这将会极大地优化供应链,减少库存……

当前,RFID等产品电子标识技术、物联网技术以及移动互联网技术,能帮助制造企业获得完整的产品供应链大数据,利用大数据分析,能大幅提升仓储、配送、销售效率,大幅下降成本。

以海尔公司为例,在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。

相关专家表示:通过大数据提前分析和预测各地商品需求量,从而可以提高配送和仓储的效能,保证了次日货到的客户体验。智能化物流系统可以通过大数据技术,对生产、流通领域数据进行分析整合,从而做到订单的合理配置,减少运力浪费、提升效率。

物流环节运用大数据来分析商品的特性和规格、客户的不同需求等问题,从而用最快的速度对这些影响配送计划的因素做出反映(比如选择哪种运输方案、哪种运输线路等),制定最合理的配送线路。

而且企业还可以通过配送过程中实时产生的数据,快速地分析出配送路线的交通状况,精确分析配送整个过程的信息,使物流的配送管理智能化。基于大数据实现车货高效匹配,不仅能减少空驶带来的损耗,还能减少污染,是一举多得的好事情!

产品故障诊断与预测方面,无所不在的传感器、互联网技术的引入,使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。以车载电话、倒车影像系统等许多车载应用为例,他们可以创造有价值的数据,尤其是有利于找到诊断日益复杂的引擎和控制系统问题的新途径,能够带来丰厚的经济回报。

通过解读汽车收集的各类数据,可以降低维修成本,优化诊断技术,进而可以提高诊断和维修能力,加快维护保养速度,这就意味着在相同的时间,可服务更多的客户以增加收入。而对于驾驶员来说,获知诊断数据,会提高汽车定期和全面保养的次数,从而增加维修保养订单,带来更多收入。

我们知道,新能源汽车的发展正在日益完善,它只需要很少或根本不需要提供更多的服铡5缍汽车的低保养或无保养,或已让人叹为观止;而无人驾驶汽车发展势头的迅猛,也令人刮目相看。今后,新能源汽车、自主驾驶汽车的更多新款将会占领市场,从根本上实现终身免保养,最终,传统型车辆将会全部消失。

这就深刻影响着行业的发展,会彻底改变其商业模式。汽车经销商还可能和驾驶员共同读取汽车自动化诊断数据并从中获利。很快,大多数车载终端可进行远程软件升级,完成维护,目前通过连接居家蓝光机和游戏系统网络接口,便可以实现远程升级。

智能制造技术分析范文4

关键词:智能制造能力;评价指标体系;因子分析法

中图分类号:F272 文献标识码:A

Abstract: Intelligent manufacturing is the inherent requirements of the global manufacturing industry development, and is also China's manufacturing technology innovation, industrial structure to upgrade the key breakthrough, intelligent manufacturing is becoming an important direction for industrial development and change. On the basis of the previous research on the intelligent manufacturing, according to the actual development of our country, we construct a comprehensive evaluation index system of intelligent manufacturing capability, using the factor analysis method to analyze the 19 provinces in the central and eastern regions of China, and draw the comprehensive score and rank of the intelligent manufacturing ability of each province, compare the level and development trend of the intelligent manufacturing capability from 2012 to 2015, analyzes the main influencing factors of intelligent manufacturing capability, put forward reasonable countermeasures and suggestions, and then improve the level of development of intelligent manufacturing.

Key words: intelligent manufacturing capacity; evaluation index system; factor analysis

制造业一直以来都是国民经济的重要基础和支柱产业,也是一国经济实力和竞争力的重要标志。国际金融危机期间,德国凭借强大的制造业优势依然保持了经济的稳定增长,成为受危机影响最小的国家,德国提出的“工业4.0”主要致力于智能制造方面的发展,形象的被誉为第四次工业革命。金融危机后,美国提出了“先进制造业国家战略计划”,并采取多种措施“吸引制造业回流”,英国提出了“高价值制造业战略”,日本提出了“产业复兴计划”、法国提出了“新工业法国”等[1]。当今世界各国为摆脱经济危机带来的影响,致力于振兴实体经济,制造业在大国之间的竞争日趋激烈,作为世界制造大国,为了能在新一轮的竞争中取得优势,2015年5月我国依据自身智能制造产业发展水平及其特点正式提出《中国制造2025》,以大国及强国战略思维和战略布局,全面提升中国制造业的国际竞争新优势。

当前,实现我国制造业的转型升级离不开智能制造产业的发展壮大,这也是实现我国制造业新优势的现实需要[2]。长远看来,智能制造给制造企业的发展提供了一个可以预见的未来,但是由于受企业因素或技术、管理的影响,实现智能制造还面临着诸多的挑战。高昂的软件费用、建设费用使得众多制造企业特别是中小型企业无法接受,信息化基础薄弱也导致信息集成方案无法正常运作,当前类似SAP、Oracle等信息集成方案只能应用于大型制造业[3]。中国各地区制造业发展水平各不相同,中东部地区相对西部地区在经济实力、科学技术水平、硬件设施等方面占据一定的优势,因此结合智能制造的发展条件特选取中东部19省年主营业收入在2 000万元及以上的规模工业企业作为主要研究ο螅并结合当地政府智能制造发展基础设施建设水平及资源投入等方面对各省智能制造能力进行综合评价与研究。

智能制造能力研究涉及范围广,相关学科体系多,较难对其进行科学、客观的评价,目前国内外在智能制造综合能力评价方面研究少,研究方法及内容局限性较大,在设置评价指标权重方面难免带有一定的个人主观性。因子分析法能够有效地避免人为进行权重确定的主观性,具有较强的客观性[4],因此,本文采用因子分析法对研究对象的智能制造能力进行横向和纵向比较,研究各省差距所在,给出相应分析,并据此有针对性地提出政策与建议。

1 智能制造能力评价体系构建

1.1 指标选取

在智能制造能力的评价过程中,构建合理的智能制造能力评价体系是至关重要的,而评价指标的选取是建立有效评价体系的基石。因此,选择合适的评价指标是智能化制造能力综合评价过程中的基础、关键和核心工作。

本文基于科学性、合理性、系统性以及导向性原则,围绕智能制造能力这个一级指标,分解出3个二级指标和15个三级指标,二级指标分别从创新能力、绩效产出能力、基础设施3个维度对智能制造能力进行衡量,并将三级指标编码为C1~C2,便于后续工作的进行[5]。具体评价指标体系如表1所示。

1.2 指标含义

(1)创新能力。强有力的创新能力是智能制造发展模式必不可少的条件,创新能力的基础是人力、物力等资源的投入,因此本文将R & D人员全时当量、R & D经费、R & D项目数纳入评价指标体系内[6]。此外,选取专利申请数、有效发明专利数、发明专利申请数作为创新能力水平的体现。

(2)绩效产出能力。绩效产出是发展智能制造的最终目的,智能制造能不能为社会带来价值,关键在于成果的转化,因此本文从规模以上工业企业单位数、主营业务收入、嵌入式系统软件开发项目数、智能装备销售收入4个子指标来对智能制造能力评价。

(3)基础设施。大量的物资信息,通过先进的基础设施进行快速流通和共享,更好地发展智能制造产业必须构建安全、实用、先进、全面的基础设施网络。因此本文选取互联网上网人数、域名数、互联网宽带接入端口、铁路营业里程、等级公路里程5个三级指标作为基础设施建设衡量指标。

2 实证研究

2.1 数据来源

本文数据主要来源于中华人民共和国国家统计局网站统计年鉴,选取2012~2015年我国中东部地区19省智能制造能力指标数据进行整理分析,针对2015年统计数据进行详细分析说明,并使用SPSS软件处理样本数据。

2.2 统计分析

2.2.1 KMO和Bartlett检验分析

本文样本数据分析结果如表2,KMO检验值为0.799,大于0.7,卡方检验的概率等于0,小于0.05,满足能够使用因子分析法的基本需求,且表明各变量之间存在显著相关,因子分析效果较好。

2.2.2 方差贡献分析

利用方差最大正交旋转法对因子的主成分进行提取,依据特征值大于1和累计解释方差大于85%的原则,本文依据表3数据提取第一主成分F1和第二主成分F2两个公共因子作为新的综合指标对智能制造能力进行评价。

2.2.3 因子载荷矩阵和得分矩阵

通过使用SPSS软件对数据进行统计分析,采用方差最大正交旋转法对因子进行处理,得出表4旋转后的因子载荷矩阵和表5因子得分系数矩阵。

公因子F1、F2从两个不同的方向反应智能制造能力水平,为了更准确对各省的智能制造能力水平进行评价,在因子分析法的基础上,可以应用回归法分析获得两个主因子的得分,并将上文分析中每个主因子所得的方差贡献率和总贡献率进行比较,得出比值,并以此比值作为权重进行后续的加权求和,进而可以得到2015年19省智能制造能力总得分及排名,具体如表6所示。计算公式如下:

F=∑F×方差贡献率/总方差贡献率

2.3 结果分析

依据上文经计算得出,中国中东部地区19省在2012~2015年间的智能制造能力综合得分及排名,具体如表7所示。

针对我国中东部地区19省4年间的综合得分及排名进行分析可得出如下结论:

第一,从整体发展来看,我国中东部地区19省在2012~2015年间智能制造的发展基本呈正向上升态势,其中,除了广东省、辽宁省、黑龙江省和山西省在4年间的得分趋势呈现轻微下降趋势,其他15省综合得分均呈上升趋势,尽管某些省份综合得分上升趋势有限,或期间某年下降,但其上升趋势是毋庸置疑的。而且在此4年间智能制造能力综合得分均值东部地区0.559高于中部地区-0.416,反映了东部地区的智能制造能力水平要高于中部地区。

第二,从具体得分的角度看,把我国中东部19省智能制造的发展态势进行聚类分析可划分为3个层次。第一层次是4年间综合得分均在1以上的省市,说明智能制造能力较好,由江苏、天津、北京、广东和山东构成;第二层次是4年间综合得分存在1以下且均在0以上的省市,说明智能制造能力一般,由浙江和上海构成;第三层次是4年间综合得分存在0以下的省市,说明智能制造能力较差,由剩余12省构成。其中,0是一条评判智能制造能力高低的重要分界线,由分析可知我国大部分地区的智能制造能力处于较低层次,仍有待提升。

第三,从横向比较的角度看,我国中东部地区19省在2012~2015年间的发展差距较大,说明我国各省内部存在着较为严重不均衡问题。从“一头一尾”进行比较可以得出,居于前列的天津和列居末位的海南,尽管两省同为省级行政单位且土地面积相近,但是它们在2012~2015年这4年间的综合得分跨度均值超过了2,这既说明我国各省之间存在两极分化的现象,同时也意味着两者之间的差距不是短时间内能弥补上的。从第一层次和第三层次的比较来看,两个层次之间的综合得分差距最小值也高于0.5,这表明在智能制造发展水平方面,不仅是单个省,处于不同发展层级的各省之间也存在着较为突出的分化和不均衡问题。

3 对策建议

本文通^构建智能制造能力评价指标体系,分析我国中东部地区19省智能制造现状和水平,找到智能制造的有效实现路径,对当今企业发展方式以及转型升级具有重要的指导意义,同时对政府引导和扶植有实力的制造企业向智能制造转型提供了必要的参考和理论基础。基于以上理论分析和我国的发展现状,可以给出以下几点对策建议。

3.1 企业对策

3.1.1 总体规划,分步实施,科技并行

建设智能制造系统、智能工厂是一项长期、复杂的工程,必须按照“总体规划,分步实施,重点突破,效益为先”的原则进行规划。首先要将其纳入企业的长期发展战略,确定企业5至10年的发展愿景、企业目标及企业在所属领域内的位置;其次要在企业长期发展的战略规划下找出企业发展的弱点和不足,确定重要程度,在可行条件下分阶段、分目标依次进行改进;最后必须紧握企业可持续发展核心竞争能力,确保优势,并积极发展智能制造相关科学技术以及引进新产品和新设备[7]。

3.1.2 M行智能制造投资效益分析

智能工厂建设的首要目标是工厂自动化以及智能化,这往往需要大量的资金支撑,在工厂建设过程中资金大量消耗的基础上进行效益分析显得尤为重要,不能只是简单的追求工厂智能化发展。虽然我国劳动力成本近年来呈现上升趋势,但相较于世界上其他发达国家劳动力成本优势亦相当明显,人工作业在工厂某些生产活动中所表现出的优势亦不容忽视,在某种程度上人工作业相较于机器作业更经济有效,因此建设自动化、智能化工厂时,对于工作环节的选择需要十分慎重,盲目建设全面自动化以及智能化工厂的行为缺乏合理性。企业应在考虑自身发展状况的基础之上,结合本企业现阶段已有的技术、经济以及能力水平稳步实现工厂技术与设施更新换代。

3.2 政府引导

3.2.1 明确目标和主攻方向

各省的实际情况和当前智能制造相关技术产业的发展现状与国家提出的“中国制造2025”和“互联网+”计划进行有效互联互动,坚持市场主导、政府引导、创新驱动、示范带动,以推动制造业智能化发展为主线,以推进智能工厂(车间)建设和提升产品智能化水平为主攻方向,着力推进企业研发、生产、管理和服务智能化,着力发展智能装备和智能产品,加快提升智能制造整体水平,推进产业结构由中低端向中高端迈进。

3.2.2 大力推进智能化建设,加强智能化的保障实施

大力实施制造业强基计划,加强关键基础材料、核心基础零部件(元器件)、先进基础工艺等产品技术攻关;推动数控技术和智能技术在重点产品、领域的渗透融合,推进产品的数字化、智能化,进一步提高产品的信息技术含量和附加值,促进工业产品向价值链高端发展;发展物联网、云计算、高端装备制造与工业设计、软件等智能化的新兴产业,协同提升产业的智能化水平;提高我国信息网络发展水平,积极完善各省智能制造产业全面普及。同时,各级政府应该加大对智能制造产业的重视以及支持力度,并积极引进人才、科学技术以及更完善的政策、资金支持,引进国内外知名工业企业和研发中心,实现领域内相关产业的对接和产业链上下游之间的互联互通。

参考文献:

[1] 王友发,周献中. 国内外智能制造研究热点与发展趋势[J]. 中国科技论坛,2016(4):154-160.

[2] 刘源清. 中小企业智能制造系统应用与研究[D]. 杭州:浙江大学(硕士学位论文),2014.

[3] Jinfa L, Biting L. Evaluation Method of R & D Investment Value of Intelligent Manufacturing Enterprise Based on Growth Option[J]. Procedia Engineering, 2017,174:301-307.

[4] 何晓群. 多元统计分析[M]. 3版. 北京:中国人民大学出版社,2011.

[5] 吴琼. 黑龙江省工业化和信息化融合程度评估研究[D]. 哈尔滨:哈尔滨工业大学(硕士学位论文),2014.

[6] 郭璇u. 区域创新效率影响因素实证研究[J]. 商业经济研究,2015(10):125-127.

[7] Dombrowski U, Wagner T. Mental strain as field of action in the 4th industrial revolution[J]. Procedia CIRP, 2014,17:100-105.

[8] 任胜钢,彭建华. 基于因子分析法的中国区域创新能力的评价及比较[J]. 系统工程,2007,25(2):87-92.

智能制造技术分析范文5

制造云大数据

众所周知,人类社会正面临着一场新的技术革命和新的产业变革。那么我们认为互联网+人工智能的时代正在到来。怎么解读人工智能?首先,网络是一个泛在的互联网,包括魍车幕チ网和互联网+人工智能,其核心技术是七类技术深度融合,包括新互联网技术、新一代信息技术、新人工智能技术、新能源技术、新材料技术、新生物技术以及新应用领域专业技术。互联网时代特征总结为泛在互联、数据驱动,共享服务,跨界融合,自主智慧和万众创新。

当然,制造业作为国民经济、国计民生和国家安全的重要基石,正面临全球新技术革命和产业变革的挑战,特别是新一代信息通信技术,核心就是要发展智能制造技术产业和应用。对我国来说面临的五大挑战是:第一要从技术跟随到创新以及到超越,第二要从传统制造向数字化、网络化、智能化转变,第三从粗放型制造向质量效益性转变,第四从资源消耗到绿色制造转型,最后要由生产型制造到生产+服务型制造转变。

其核心问题就是要贯彻创新协调绿色开放共享发展理念,要走中国特色的工业化道路,以创新发展为主题,以制造业提高质量增加效益为中心,特别强化两化融合,而且要推进智能制造主攻方向。

云制造的概念首先是基于泛在网络,其次是借助新兴大制造技术、信息通信技术、智能科学技术及制造应用领域四类技术深度融合。数字化、网络化、智能化作为技术手段,构成一个以用户为中心的统一经营的智慧硬软资源和能力的服务云。这实际上就是人、机、物互联服务,或者是现在提出的工业互联网的概念。

用户通过智慧终端和智慧云制造服务平台能随时随地按照需要获取智慧制造的资源和能力,要对整个全系统全生命周期产业链里面的人机物信息技术自主的智慧的感知,互联协同分析认知和决策控制与执行,促进制造全系统及全生命周期活动中的人组织、经营管理、技术设备三要素及信息流、物流、资金流、知识流、服务流集成优化,形成一种基于法在网络、用户为中心、人机物信息融合。

智慧云模式是什么,手段是什么,业态是什么,特征是什么,实施内容是什么,以及目标是什么都值得探讨。

我们把它叫智慧,因为强调三种深度融合:人物与环境信息深度融合,数字化、网络化智能化的深度融合,工业化和信息化的深度融合。同时,很重要的基于大数据的并行、协同、实时、互联、智能的进行创新。根据这样一个理念所构成的系统,我们把它叫做智慧云制造系统或者简单说智慧制造云。概念模型包含几大部分内容,一是制造资源的能力和资源,这里面包括软的、硬的,包括能力和智能互联产品;二是制造云池;三是制造全生命周期的智慧云。其核心支持就是智慧云制造的平台。

综上,智慧制造云是一种互联网+人工智能时代的模式手段。制造模式是以用户为中心的互联服务协同个性柔性社会化智能制造产品以及服务用户的模式,它的手段就是四类技术深度融合的数字化网络化作为技术手段,构成一个智慧化的人机物环境信息互联系统,体现数字化、物联化、虚拟化、协同化、定制化、柔性化和社会化的产品。

那么智慧制造云、工业云里面的大数据实际上是全系统全生命周期里面的三要素、五个流里不断产生的四个大数据,包含制造全生命周期里面的各种数据,有企业经营管理的数据,有技术产品设备的数据。有结构化、半结构化和非结构化数据,有静态数据、动态数据和实时数据。

智慧制造云大数据的特点,除了四个云以外,和大量、高速、多样、价值以外,还加上了多元符合模态、数据类型异构等。其作用简单来说能精准高效智能地用到全生命周期的活动,促进云制造的智慧化,目标实现产业研制、管理服务效率质量成本能耗,实现产品加服务为主导的随时随地的按需个性化指导。

目前,大数据在感知基础上,有六类大数据关键技术,关键技术在制造云里有新的需求。首先大数据的集成与清洗,就是把不同来源、格式、特点性质的数据及数据源在逻辑上或物理上有机地接入平台并进行新审查和教研,得到干净、一致的数据。第二技术就是大数据存储和管理,采用云存储和分布式存储技术及高吞吐量数据库技术与非结构化数据访问技术,实现运输集中的数据经济、高效、高可靠、容错的管理与服务。第三大数据分析挖掘,从这些海量的随机的数据中要找出有价值的东西,比如说现在分布式计算引擎,数据分析机器学习等,对我们制造云要以应用目标为导向,导出相应算法软件。同时需要建立云制造应用系统定量分析的人工智能分析模型,数据不是直接用的,是通过模型来的。可视化,各种各样数据可视化而且能应用,比如多维数据分析,虚拟现实等,对目前综合处理显示多维数据以及交互需求是非常重要的。其次是大数据的标准和质量,对智慧云多类型标准需求不限,而且交易和交互要作为一个导向。最后就是安全,全生命周期里面要安全,像隐私保护、数据水印以及区块链技术等。

大数据的云化

第三个问题就是大数据云化。直接把大数据迁入模型软件,第二是直接提供DAAS,第三个就是风险,最后一个就是大数据的可视化,基于大数据可视化技术实现智慧制造云里面的风险和显示。

云里面大数据怎么用也值得探讨。第一类是航天产品电缆数据化设计,也就是说把电缆有关的经验数据和综合分析性能数据收集过来,放到电缆数据工程里面,实现了电缆数据化生产的一体化,产生效果后有60%以上研制时间开展产品质量提升。第二类是医药,利用现在制造云里面官方电子病例、医疗等信息系统提取海量临床数据,挖掘药物效用及治疗方法,从而为医药研发提供参考。第三类是航天制造和生产比如博世、力士乐等智能生产。第四类就是维修,比如C919健康管理,需要实时检测大数据中心。根据上面的情况,智慧制造云在大数据当中是很重要的。

最后提点建议。首先当然是大数据已经成为智慧制造云建设和运行的重要资源,如果没有大数据、没有云、没有人工智能,那最后肯定是做不到智慧化制造。而研究实践需要从技术、应用、产业三方面来协调,进行各个层次的技术创新和人才培养。

从技术应用和产业方面,概括性地提几点想法:第一,从技术上要做到重视大数据、信息通信技术、人工智能技术、系统工程技术与制造领域等多种技术的深度融合。要搞大数据,必须要做到这几个技术的深度融合,这是我们的一个观点。第二,离不开云,因此要对面向用户大数据的云服务技术进行研究。第三,要重视基于大数据制造全生命周期里面的新模式、流程、手段的研究。最后,要进行符合共享经济商业模式的技术研究,当然还有安全和相应标准的制定与评估。

从应用角度来看,要“四个突出”。第一要以突出制造特色和行业特点来开展;第二要突出问题导向,问题在哪,竞争力缺点就在哪;第三要突出大数据驱动的智慧云制造管理运行模式、手段和业态的变革;第四要突出三要素与五流的综合集成化、优化和智慧化。

智能制造技术分析范文6

关键词:人工智能;电气自动化;自动化控制

人工智能工程技术专业是随着现代计算机信息技术的飞速发展,从而得以向精细化发展延伸的专门技术学科,随着国民经济的快速发展和信息科技的不断进步,该专门技术被逐渐广泛应用在多个工业领域,替代传统人工智能实现工业应用和日常操作,其技术优势也极为明显,能够极大的有效节省企业人力资源,并且有效节约生产成本。

1人工智能技术运用的优势

人工智能管理技术也就是基于其他计算机科学技术逐步发展形成起来的独立一门学科和综合技术,实际上就是在各种计算机技术平台上通过模拟的对人的全部大脑进行展开的对图像和处理数据的进行智能化逻辑分析和综合处理,人工智能最大的优势就是说它能够针对人类信息进行加以实时收集和分析处理,从而完全替代了对人类进行展开式的海量数据计算。人工智能控制技术主要运用在汽车电气中的自动控制里,大致可以集中在3个主要层面的技术应用,依次分别是模糊控制、运作管理效率以及专家系统。人工智能技术的应用极大程度上降低了企业人力资源的管理投入,让企业人力资源管理成本能够得以有效节约,从而大大提升了生产工作效率,避免人工误差的情况出现,提升生产控制的工作确切性。

2人工智能信息技术在电气工业自动化技术中的重要应用

2.1人工智能技术在电气自动化技术的操作过程中的应用

在这种传统的工业电气自动化技术技术工作处理过程中,电气设备的所有操作处理工作都可能是经常需要由专业工作人员自己来负责开展的,但是在企业电气自动化技术智能控制发展过程中就在引进了一种人工自动智能控制技术之后,工作人员只是仅需要自行设置一些相关的控制参数,电气设备就可以能够自动正常运行,并且也在一定程度上将由于非人为因素而导致企业发生电气事故的概率降低了,确保企业电气自动化技术在企业生产经营过程当中能够安全运行、稳定运行,并提供一定的安全保障。

2.2人工智能技术在电气自动化技术控制过程中的应用

在我国企业现阶段的研发生产经营过程中,对于通用电气自动化技术应用提出了更高的技术要求。在一个电气自动化技术控制工作过程中正当应用这种人工自动智能控制技术时,这样能够使电气自动化控制技术工作的运动精准度得到有效的提升,对于提高电气设备的控制性能也可以有一定的帮助改善故障作用,从而有效的降低发生电气故障的发生机率。

2.3人工智能技术在电气设备中的应用

在现代电气设备日常运作管理过程中引进了现代人工智能管理技术之后,计算机人员取代了大部分的专业工作人员,在电气设备日常运行管理过程中电气企业不再需要额外投入少量的技术人力负责设备监管中的工作人员即可。

2.4人工智能技术在故障诊断过程中的应用

通常这种情况下,在一些电气设备的日常运行管理过程中,对其性能进行任何故障出现问题的分析判断时,通常都认为是需要借助专业工作人员的专业工作实践经验,除此之外,就是还需要由专业工作人员对这些电气设备开展全面的故障检查工作,从而对电气设备的任何故障才能进行准确的分析判定。然而在目前电气自动化技术过程控制系统技术中,也在应用了一些人工智能信息技术之后,通过充分利用目前人工智能信息技术系统中的专家系统以及网络等技术功能对一个设备本身进行故障检查,从而对一个设备目前是否已经出现日常故障情况进行准确的诊断判定,并可以确定诊断出目前设备的日常故障出现类型,同时可以提出一些有利于针对性的故障解决对策措施,在极大的的程度事实上将目前设备的日常故障检查诊断出现时间以及设备维修处理时间等都进行了大大缩短。

3电气自动化控制中人工智能技术的应用思路分析

简单的介绍人工智能监控技术和应用,分析过中国电气自动化技术过程控制中心在人工智能监控技术广泛应用的几大优势之后,围绕着监控技术理论应用产业发展新的思路以下合理性的观点一并展开技术理论应用分析。

3.1在电气自动化设备里的应用分析

整个工业设备电气化和工业自动化设备系统对于设备的开发设计以及运用,重在一个全程,因为整个工业电气化系统设备由于系统自身以及设备部件构造繁杂,因此就需要在整个设备设计运用过程里牵涉到诸多工业相关基础学科和工业技术应用领域内的专业知识,因此这就直接要求一个设备设计操作者其操作能力和实践应用能力都必须要比较高。想要更好的的体现和突出传统企业使用电气人工智能自动化设备的信息管理技术水准,人工智能设备相关信息技术运用,应该对于能够将其智能和可实现性的技术应用形式,透过使其能够直接运用智能程序语言进行编写等多种智能技术形式。

3.2在电气控制过程中运用分析

电气控制技术属于现代电气自动化技术企业营运管理环节里的一项核心技术,能够在实际运营中有效让电气自动化后的操作功能得以有效实现,能够较为有效的舒缓企业工作人员的工作劳动强度,与此同时较大的提高企业工作效率以并减少实际进行营运的人力成本。关于在自动化智能控制技术领域里,如今对于人工智能控制技术其实际运用,大致可以集中于除了神经网络,一定程度的智能控制和模糊处理系统控制之外,还有专家系统的智能创建等几个层面。

3.3常规操作中的应用分析

电气设备维修服务行业和每个时代人们的实际日常生活服务工作密切关联相连,实际日常生活电气维修操作中会不小心造成的各种财产安全事故和个人财产损失风险,最终极有可能还会造成广大电气维修使用者的安全以及财产健康受到严重危及。透过各种新型人工智能电子信息处理技术的广泛深入运用,能够较好的有效的地改进日常应用电气系统操作的复杂处理程序环境,使得繁杂的日常电气操作中的处理程序流程最后可以直接转给电气系统以通过流程自动化将之通过处理程序完成,与此同时也由于我们能够有效的的降低因为日常电气操作过程中的技术人员位置变动等而出现的频繁的错误操作所致的各种技术风险性安全隐患问题,从而大大提高电气系统其自身具有的的综合应用性能以及运转的实际工作效率和日常运行中的稳定性。

3.4在事故和故障诊断里的应用分析

在施工事故和设备故障检测诊断里其中的应用最有效,这主要是因为采用电气工业自动化过程控制系统工作过程产生设备故障等各种问题的发生概率最高,假若用户出现这些问题没有及时进行诊断,就可能会直接让控制设备本身出现全面性的损坏,如此就会形成较大量的经济损失。而在近年人工智能监控技术被广泛应用之后,能够可以透过监控系统自动的来加以进行实时的的监控各种设备,假若有什么故障性的问题或者真的是具有风险性就则是会自动的来加以进行判断,假若只是属于自动检护维修服务范畴则是能够自动进行维修,而不只是属于自动检修维护服务范畴里则能够自动的在报警之后,能够让较为专业的设备维修管理人员即时展开日常维修维护工作,如此一来能够较为有效的帮助提升各种设备其中的安全性、稳定性,同时也因此能够较易将企业整体效益能够实现较为全方位的的提升。

4结语

综上所述,人工智能制造技术应用是一种新型现代化信息技术,而现如今使用的电气自动化系统的快速发展也将人工智能制造技术应用推到了新的产业发展应用平台,让其有更为广阔的产业发展应用空间。通过上文不难看出电气自动化的相关控制离不开人工智能信息技术的发展,人工智能相关技术也越来越多地运用在各领域电气工业自动化过程控制中。

参考文献:

[1]唐振宁.人工智能技术在电气自动化控制中的应用思路分析[J].山东工业技术,2019(17):138.

[2]吕颖利.论电气自动化控制中的人工智能技术[J].湖北农机化,2019(11):38.

[3]何金勇.人工智能技术在电气自动化控制中的应用思路探索[J].内燃机与配件,2019(09):208-209.

[4]罗海英.人工智能技术在电气自动化控制中的应用思路分析[J].信息记录材料,2019,20(05):68-69.

智能制造技术分析范文7

机械工程自动化应用中应该注意的问题分析。在对机械工程自动化进行应用的过程中,必须紧抓这项技术的应用过程,在生产过程中对机械自动化的基础应用进行大力推广,不仅要对其主要应用方面进行创新,还需要对协助自动化工作的配套控制系统进行改进,对一些自动化元件及时更换,要对各种传感器以及控制器、计算机软件和微处理器的技术方面进行革新,能够使其在以后的发展中更好地发挥自身的作用。不但如此,还要在生产的过程中引进一些品质优良,高性能的自动化产品,对自动化技术进行辅助工作。由于考虑到自动化生产过程中其生产性能比较容易受到系统质量等方面的影响,因此要对系统质量进行检查,对一些影响质量的因素进行排查,能够使其满足自动化生产的要求。

2自动化技术在机械工程中的应用

伴随着科学技术的不断进步与发展,自动化技术在企业生产和管理方面的应用越来越广泛,给企业带来的经济效益也越来越多,机械工程行业作为我国工业发展的重要行业,确保其生产水平得到提高才能够促进我国工业生产的发展,使用自动化技术可以达到经济发展的需要,也将我国的机械工程推向了现代化的生产模式。机械自动化逐渐向着高速集成化的方向发展,进而出现了智能自动化、集成自动化和柔性自动化等一些高科技的自动化技术。(1)智能自动化技术在机械工程中的应用分析。①智能自动化是利用人工智能技术和神经网络技术对机械工程的某个过程进行模拟和控制,促使机械工程的控制系统像人的大脑一样对数据进行分析和采集,从而达到实现系统自动化的目的。②智能自动化技术也可以看作是将集成和智能连接在一起的自动化综合技术。这种技术在机械工程的应用中能够将人工智能技术和机械制造过程有机结合起来,可以加大对生产过程的控制力度,还可以节约人力资源成本,从而更好地提高生产效率。由于智能自动化自身组成具有很大的优势,使得机械的制造系统在生产的过程中具备了很强的适应环境的能力和自主学习的能力,提高了其在生产过程中的应变能力,当机械在生产过程中遇到一些紧急情况时,智能自动化可以很快对现场进行侦查分析,从而找出合理的解决问题的方法,避免了人工处理造成的混乱和一系列问题。(2)柔性自动化技术在机械工程中的应用分析。柔性自动化是一种自动进行技术性操作的技术,它是随着计算机信息技术的发展而产生的一种新型的自动化技术,这种技术在机械工程的应用中能够对工程中的生产目标进行智能的操作,对于一些已经明确加工方向的生产产品能够很快完成加工。在机械工程中使用柔性自动化能够以数控技术为核心,将信息科技技术、现代化机械生产技术和高端的计算机信息化设备等有机结合起来,可以提高生产效率,增加生产数量,实现大批次的生产,还可以降低工人的劳动强度,从而在保障生产质量的同时达到降低生产成本、扩大产品效益的目的,更好地实现机械领域的工业化发展目标,推动了机械制造业的进步。(3)集成自动化技术在机械工程中的应用分析。所谓的集成自动化就是指将现有的信息技术进行不断改进,以确保整个工程的制造过程更加具体,作为机械工程自动化中一项重要的技术,它的目的是加强集成功能,开拓机械生产。集成化自动化技术还可以把生产过程中全部产品相关的生产信息和生产技术有效地联系在一起,既可以加强机械工程的集成工程,也可以使得机械生产量进一步得到提高,最终使得机械工程的集成能力不断增强。因为集成化技术有着诸多的优势,因此在国家机械工程制造中得到了普遍的认可,并且在应用中随着计算机集成系统的改善集成自动化技术也在不断实际地创新和完善,集成技术中的数据库集成和质量系统工程以及一些相对复杂的工业系统设计在许多方面被广泛应用。随着自动化技术的不断发展,从产品研发到生产控制方面的技术也在不断完善,从而为企业更好的进行管理和生产增添了动力,使企业的经济效益得到大幅度的提升。

3结语

智能制造技术分析范文8

机电自动化发展作为科学技术在制造业当中的重要发展标志,其所能够为社会生活带来的不仅是机械设备制造技术上的发展与进步,更是推动社会生产力水平向科技化、高效化发展的重要支持。随着机电自动化在机械系统设计、调试等方面的应用,其对工程机械制造业的发展及效益提升带来了重要推动。文章选择机电自动化在工程机械制造中最常见的集中技术进行分析。

1.1集成自动化技术集成自动化技术是指机械制造中对各类生产经营、技术功能的集成性发展。在传统技术模式下,实现对机械制造技术的集成化发展是不切实际的,但随着信息技术的逐步完善与应用,集成自动化技术不仅得以实现,还成为了机械制造过程中使用最普遍的技术内容。随着市场经济体制地到来,机械制造业地竞争越来越激烈,为了能够在市场竞争中站稳脚跟,很多机械制造企业开展技术研究与发展,通过将电子计算机辅助设计技术、数控教工技术以及企业管理系统等多种技术与系统内容引入到企业的机械生产制造系统中,得到了非常显著地发展,并成为了机械制造业当中企业的发展潮流,CIMS工程应用的有效保持,在提升机械制造企业的生产能力和市场竞争里的基础上,也实现了集成自动化技术地有效发展。

1.2柔性自动化技术所谓“柔性自动化技术”是以数控技术为核心,在融合其他先进技术的前提下而建立起的新兴技术类型。从生产与操作过程方面来看,柔性自动化技术能够实现机械制作与生产全自动化发展。在柔性自动化技术当中,包括机械设备的材料准备、制作、生产等一系列生产行为都由计算机来予以控制和操作。相比于传统人力机械生产模式,柔性自动化技术不仅能够在计算机技术的精确控制下,保证机械设备生产、制作过程中的各项生产行为、尺寸的准确性,同时还能大大减少对劳动力的应用,实现了对生产成本的有效控制,并在此基础上实现生产效率地有效提升,在确保机械设备生产秩序的基础上,提高生产效益。无论是从机械制造业未来发展角度考虑,还是制造企业的效益提升角度分析,柔性自动化技术都将成为机械设备自动化生产的主流模式。

1.3智能自动化技术智能自动化技术即智能华机电自动化技术,其是在计算机技术发展支持下,通过利用计算机智能系统对人类行为地模拟,从而替代人类去进行机械设备的生产操作及相关行为。从表面上看智能自动化技术与柔性自动化技术有一定的共同性,但智能自动化技术要比柔性自动化技术更高级,相比于柔性自动化技术而言,智能自动化技术能够通过对人类行为地模仿,来提高自身的工作能力,并对生产行为产生一定的判断力,这是柔性自动化技术所不具备的优势。智能自动化技术在机械设备制造中的应用,能够更进一步提升机械制造行为的准确性,并保证这一行为能够始终保持在一个高水平状态之上。需要注意的是由于智能自动化技术需要人工操作来作为主观工作支持,因此要经常对智能自动化技术进行维护,以确保智能自动化技术的良好工作状态。

2注意事项

虽然机电自动化在机械制造中展现出了多方面的优势,但针对当前的机电自动化水平来看,其仍存在诸多不足,因此在实际应用过程中,要做好以下几方面的控制:(1)规范应用流程。机电自动化在为机械制造提供支持是建立起机电自动化设备、系统软件的规范安装与应用前提下的,为此企业必须要严格按照机电自动化要求进行工作,避免操作不当而为企业带来不必要的损失;(2)做好质量控制。机电自动化在机械制造当中的应用,确实能够为机械制造带来重要帮助,但企业必须要保证其所制造出来的机械设备质量符合质检与应用要求,否则机电自动化为工程机械制造带来的进步意义都是空谈。

3结束语

智能制造技术分析范文9

关键词:智能制造;新科技革命;复合型技能;人才困境;发展建议

基金项目:2016-2017年度苏州市“高技能人才培养研发”市级课题:“苏州‘智能制造’人才现状与培养对策研究”(项目编号:GJNP201604)阶段性研究成果

中图分类号:F24 文献标识码:A

收录日期:2017年4月2日

一、智能制造技术是新科技革命实现的关键技术

科技革命是16世纪以来的一个历史现象,是科技发展的一种表现形式。在人类文明史和现代化研究领域,科技革命大致有三个判断标准:(1)科学范式或技术范式的转变;(2)人类生产、生活方式或思想观念的显著改变;(3)人口影响覆盖率超过50%。按照这种标准,16世纪以来世界科技大致发生了两次科学革命和三次技术革命。两次科学革命分别是16~17世纪的近代物理学诞生、20世纪初的相对论和量子论革命。三次技术革命分别是18~19世纪初的蒸汽机和机械革命、19~20世纪初的电力和运输革命、20世纪40年代以来的电子和信息革命。

从世界科技的前沿角度看,第三次技术革命即电子和信息革命即将结束,后信息时代即将来临,新一轮科技革命即将爆发。从人工智能到机器人,新兴技术的商业化正在重新定义各行各业并重塑社会准则。世界经济论坛创始人克劳斯・施瓦布指出:“第四次技术革命将数字技术、物理技术、生物技术有机融合,触及经济社会的方方面面,可植入技术、数字化身份、物联网、3D打印、无人驾驶、人工智能、机器人、大数据、智慧城市等将对社会产生深刻影响,重塑全球生产、消费、运输与交付体系,新产业、新业态、新经济将随之应运而生”。而这些变化的广度与深度预示着整个生产、管理及治理体系的变革。

制造在科学、技术与产业的转换之间具有桥梁和纽带作用。任何新兴科学或技术,都只有通过制造才能转化为现实生产力,制造技术是包括新一轮科技革命在鹊乃有科学技术的实现技术,见图1。而新科技革命中的制造技术则以智能制造为代表,正在改变人类生活的方方面面,智能家居、智能手机、智能设备与机器、智能建筑……所有一切都表明,人类智能的秘密正在缓缓拉开帷幕,智能制造技术将成为揭示未来新科技革命面纱的关键技术。(图1)

二、智能制造工作特点与人才技能分析

技术融合是现代社会的发展趋势,智能制造技术将通过与其他新兴技术,如语音、数据、视频、感知计算、生命科学……的交互融合,在经济产业结构、组织生产方式、基础设施建设等方面,通过递进协同效应带来社会生活的重大变革,并最终影响其工作特点与人才技能要求。

(一)智能制造工作特点

1、工作界限模糊化。传统企业将制造过程划分为三个层面,即工程层面、技术层面和技能层面。这三个层面的工作界线分明,工程层面(设计、规划、决策)的工作是产品的设计、规划与决策工作,技术层面(工艺、执行、中间)的工作是生产第一线的工艺设计或设备维护工作,技能层面(技艺、操作)的工作是生产第一线的设备操作工作。然而,在智能制造过程中,各层面的工作将相互融合,从而使工作结构呈扁平化趋势。这种不同层面间的融合需要大量融技术理论与技能操作于一体的复合型人才,也使智能制造在人才需求层次上整体呈上移趋势。

2、工作方式研究化。智能制造的关键在于使用什么样的方式与技术来达到智能化的效果。如果忽视了工作方式与技术本身的创新,只是一味地实施智能化,必是舍本逐末。制造业要保持旺盛的生命力,关键在于创新。《中国制造2025》对我国技术创新与高端制造业的发展做了具体规划。但创新是个极为复杂的过程,包括多个层面,既需要在研发设计层面创新,也需要在工艺应用层面创新。智能制造将内在地要求从业者进行创新性研究,研究与创新将成为智能制造工作内容中的应有成分。

3、操作技能高端化。智能制造生产体系所需要的是高端技能操作。高端技能操作主要存在于三大领域:(1)智能化生产系统的操作。由于智能化生产系统非常复杂,设备非常昂贵,因而对这类操作人员的能力要求也很高,操作者要能理解整个生产系统,并熟练运用各类工业软件进行柔性化生产;(2)智能化生产线本身的安装、调试与维护性操作;(3)特种加工所需要的高端操作。这是更为重要的方面,智能化生产系统无论如何复杂,它也只能生产常规产品,企业为了提高竞争力,往往要在此基础上生产特种加工的产品,而这种产品很可能是无法完全用智能化设备进行加工的,必须人工操作,但它的操作会非常复杂,对操作技能的要求也会大大提高。

4、生产服务一体化。尽管服务是企业的根本使命,但在传统制造企业中,就个体员工而言,服务与生产是相互分离的,服务属于销售或售后服务人员的工作范围,车间内的从业人员只是按标准生产产品,往往眼里只有“物”,没有“人”。这是由于在传统制造企业中,缺乏把生产与客户连通起来的技术和理念,智能制造则将完全改变这一状况。智能制造的目标是把生产线与库存、产品和客户全部连通起来,构成一个大系统,包括智能生产、智能工厂、智能物流和智能服务四大主题。在这种制造系统中,服务与生产融为一体,生产者将直接面向客户进行生产,这是一种全新的工作模式,生产者必须具备与客户沟通的能力以及按照客户需求进行定制化生产的理念。

(二)智能制造人才技能分析。智能制造的工作特点决定了其需要更多拥有跨学科背景的复合型人才,即更多具备通用性、专业性、融合性技能的人才。

1、通用性技能。智能制造将会改变从业人员原有的工作范式,对从业人员的专业性、能动性、灵活性、协作性等通用技能提出更高的要求。

(1)专业性技能。智能机器人可替代部分“低技能”劳动力,但智能化生产线和大数据系统的指挥、操作和运营需要更具专业能力的从业人员弥补机器的不足。从业人员需要能够将所学的知识和技能应用于构建真实的工业系统,以应对自动化系统故障。

(2)能动性技能。智能制造工作内容的变化要求从业人员兼具多种工作技能,以能动性地应变复杂性的工作要求。

(3)灵活性技能。智能制造要求能够迅速根据市场需求调整其生产适应能力。新形式的协作工厂让虚拟工作和移动工作成为现实,多模式、用户友好界面的智能辅助系统将协助从业者的工作。这些都可以帮助从业者实现更灵活的操作方式。

(4)协作性技能。一方面是“人人协作”,不同职业之间的分工运行模式将逐渐被合作模式所取代。智能制造将制造各个环节的联系变得更加紧密,不同的职业分工将需要更多的沟通与合作;另一方面是“人机协作”,在智能工厂里,人、机器和资源如同在一个社交网络里一般沟通协作,相互配合,重塑传统制造模式下人与设备之间的机械关系。

2、专业性技能。当前,制造企业包括很多专家都意识到一个问题,即企业无法明确需求,对自身的流程、内部业务关系无法理清,“专业性技能”的缺乏影响了智能制造工作推进的进程。

(1)精益化技能。精益生产本身提出了量化基础,而数字化车间的根基是可量化的被测对象。数学建模的控制过程、可量化的信息模型,都是依赖于精益提供基础数据源,精益缺乏的情况下也就会失去“数字化”的根基。

(2)信息化技能。很多精益生产基础很好的企业,同样困惑如何推动智能制造。因为,在传统的制造业里,也有所谓的“CIO”(Chief Information Officer,首席信息官),这些CIO可能是IT出身,但是对于如何将底层数据、智能分析进行融合,由于缺乏对工艺对象的了解,使得具备智能制造意义下信息化技能的人才极其缺乏。

(3)自动化技能。自动化衔接了机器控制与数据采集,但是自动化在向更为智能的机器开发时,需要基于PLCopen的标准化编程、OPC UA、机器人应用与集成系统的规划与开发等技术人才。随着机器的智能性、集成性的提高,对于自动化本身的人才需求也与以往更加不同,对于软件工程的能力,包括软件开发、软件质量与进度控制这些综合能力的要求较之以往更高。

3、融合性技能。技术的融合,包括OICT(Operational、Information、Communication、Technology的缩写)的融合是一种趋势,但是规划与设计的全局性人才是缺乏的,这类人才需要具有统筹运作与规划的技能。

(1)项目规划技能。这项技能要求懂得精益生产,了解生产过程与工艺,能够将信息通过组织分类来设定企业的制造目标,并能够统筹自动化、信息化与通信规划流程、制定执行路线图,推动项目的进度并持续推进设计的改善。

(2)资源整合技能。整合技能包括内部各个部门之间的沟通、外部力量的协调,类似于一个中央节点来协调各方,对各方设定目标、提出需求,并定义标准接口,设计流程与检查,以及进行阶段性的目标监视。

(3)结构化思维与思维完整性技能。与所有的创新一样,智能制造的创新也不是大脑灵光一现的结果。创新需要系统性的思维,需要在一个问题中能够按照逻辑顺序将可能潜藏的问题进行结构化的规划,包括对问题的结构化思考、策略性思考,而这需要具备标准化、模块化思想,以及完整性思考的能力。

三、智能制造人才困境与发展建议

根据教育部官网2012~2014年统计数据测算,2014年度,我国十大重点制造领域年度人才总缺口粗略估计在50万人左右。其中,高档数控机床和机器人、农机装备、节能与新能源汽车三大智能制造领域人才缺口共计25.5万人左右。(图2)

《世界经理人》杂志2015年公布的《中国制造企业智能制造现状报告》显示,有近三成被访企业认为,使用智能设备生产的最大难题是人才,越来越多企业面临“设备易得、人才难求”的尴尬局面。人社部的劳动力市场供需数据亦能说明我国技工的紧缺现象,数据显示,近几年我国技能劳动者的求人倍率一直在1.5∶1(1.5个岗位对应1个求职者)以上,高级技工的求人倍率更是达到2∶1以上的水平。

目前,智能制造人才除了在盗可洗嬖诰薮笕笨冢在技能上亦与发达国家相去甚远。以机器人行业为例,2013年我国就已超越日本成为全球最大的工业机器人应用市场,2014年我国共销售工业机器人5.6万台,2015年6.42万台,但多以三轴、四轴低端机器人为主,五轴、六轴等高端机器人较少,且关键零部件,如控制器、减速机、伺服电机等主要依靠进口。

人才的缺失极大地制约了智能制造的推进与发展,造成这种现象的主要原因有:

(一)缺乏能促进职业能力持续积累的人才培养体系。智能制造所需要的高度复合型人才的供给,需要一种能促进职业能力持续积累的人才培养体系。目前,我国的职业教育体系有完备的中等职业教育、高等职业教育,如果一批本科院校能顺利向技术应用型转换,我们还将拥有规模较大的技术应用型本科教育。同时,专业学位教育随着多元化学位制度改革的顺利进行,在人才培养中发挥的作用也将越来越强。但问题是,各个阶段的职业教育相互割裂,其关系更多的只是学制关联,而非课程关联。虽然许多省市推出了中高职衔接甚至是中本衔接项目,但这种衔接也更多地只是为了解决职业院校的招生问题,它们往往只是在现有课程框架下对课程体系做些整合,以提高人才培养效益,并没有系统探索这种框架在新的人才培养体系中的功能。

(二)缺乏基于职业能力开发的课程体系与组织方法。任何人才的培养最终都要依托课程设置。当前,既有职业院校的课程体系仍以应用系统的学科知识架构为主,且专业区分过于细化,跨学科的课程体系相对缺乏,造成懂信息化的不懂智能化,懂智能化的又不懂制造技术等,因而跟不上智能制造实践的发展需求。职业能力课程标准体系是智能制造人才培养体系有效运行的前提,只有设计直接针对基于实际工作职业能力的课程体系,才能保障智能制造意义上的人才供给。这就涉及到基于实际工作的职业能力开发及课程组织问题,这也是课程体系开发的关键环节,如果缺乏有效解决这一问题的方法,智能制造职业能力的培养就只能停留在概念或理想阶段。

(三)缺乏基于深度校企合作的工艺传承模式。目前,智能制造最具代表性的国家是德国、日本和美国。美国的制造业主要靠基础研究的重大突破作支撑,德国和日本的制造业则主要靠精湛的工艺与工艺创新作支撑。从我国制造业的发展轨迹来看,短期内期望通过基础研究的重大突破来提升竞争力不太现实,较为可靠的路径是工艺层面的突破。无论德国还是日本,之所以拥有大量技术精湛的工匠,能在工艺领域有重大创新,关键在于其技术技能人才培养都有着企业的成功介入,而且这种介入不是表层的校企合作,而是有着企业内稳定的师徒关系作保障。正是这种师徒关系,使其技术技能人才能获得大量企业技术专家的支持,并通过师徒传承持续地在某技术领域进行钻研,最终取得突破。目前,我国院校职业教育只能教给学生普通的技术知识,这种技术知识对于维持处于粗放型阶段的企业运行是可行的,但对定位于高技术的企业来说就远远不够了,对于从事智能制造的企业来说更显无力。

针对以上问题,建议如下:

(一)深化“专业能力”和“通用能力”兼具的人才培养体系。智能制造对人才的专业能力无疑提出了更高的要求。技术的日趋复杂和精密,专业化程度越来越高,无扎实的专业知识则无法满足岗位需要。为提高专业能力,需要加大专业训练的强度,增加专业知识的深度,在大学阶段就强化学生在校项目经验以及企业实习经历。除了专业能力,综合能力或通用能力也很重要。通用能力如沟通表达能力、自我管理能力、逻辑思维能力、问题解决能力、学习能力等,至为关键。优秀的个人素养和职业素养,也是人才持续发展的重要因素。德国慕尼黑工业大学机械工程系的社会软技能培训提供了一个通用能力培养的范例。除了在学士学位课程和硕士学位课程中分别设置有两学期和一学期的软技能模块,该系还成立了社会能力与管理培训中心、关键能力中心等专门的机构,并开设超越工程学科本身的职业技能主题工作坊。社会能力和管理培训中心的目标是增加本系学生除工程学科之外的各种技能。该中心的教学主题覆盖了社交途径、问题方法和管理培训等方面,具体包括团队和项目工作能力、解决问题的能力、创造力、肢体语言和领导能力、自我反思能力等。关键能力中心通过塑造高水平的课程,旨在为学生提供职业技能以及所需要的其他能力资质,并充分满足以服务和效率为导向的社会需要。

(二)开发“工作系统分析”与“职业能力研究”相结合的课程体系。适应智能制造职业能力开发的课程体系,必须按照职业教育课程开发原理,找到适合职业能力开发与课程框架的正确方法,否则很容易滑入偏向理论知识的学科课程体系中,从而培养不出技术应用型人才。这种课程开发方法应当朝两个方向进行研究:一是工作系统分析。这种方法不是把个体要执行的局部任务作为分析单元,而是把个体要完成的一个完整的工作系统作为分析单元,从而避免因任务的片段化而无法获得整体能力的问题;二是职业能力研究。智能制造系统对职业能力的要求是深层多样的,要开发出这种反映个体工作实际的能力标准,有必要在工作系统分析能力的基础上辅以职业能力研究。这种职业能力研究还应当建立在工作模式研究的基础上,结合心理学等学科挖掘智能制造所需要的职业能力。

(三)构建基于深度校企合作的高端现代学徒制。智能制造人才的培养必须有企业的深度介入,这需要在一贯制培养体系设计的基础上,进一步构建现代学徒制的人才培养方法。现代学徒制需要考虑以下三个方面的问题:(1)解决社会青年的就业问题;(2)培养技术精湛的技术技能型人才;(3)通过师徒之间技术的传承与长期积累实现技术创新。学校职业教育尽管存在许多优势,但它也只能让学生获得基础性的技术知识,无法让学生获得精深的技术知识,技术精湛并能实现技术创新的人才培养体系离不开现代学徒制。

四、结论

综上所述,以智能制造榇表的新科技革命在有望促进经济发展、改善人类生活品质的同时,对人才技能的培养也产生了深远影响。在智能制造过程中,从业人员将扮演规划者、协调者、评估者、决策者等多个角色,不仅需要懂得管理、研发与创新,还需要熟悉机械、电子、通信、互联网等领域,不仅需要承担起智能设备的设计、安装、改装、保养工作,还需要对相关信息物理系统、新型网络组件进行维护,并对生产设备模式、框架结构、规章条款、研发设计进行不断优化,这些都对从业人员提出了更多更高的技能性要求。智能制造人才的培养,需要我们对相关问题进行深入、系统的研究,这是一个庞大的工程,需要做好顶层设计,并采取果断行动。

主要参考文献:

[1]中国教育科学研究院课题组.完善先进制造业重点领域人才培养体系研究[J].教育研究,2016.1.

[2]朱剑英.智能制造的意义、技术与实现[J].机械制造与自动化,2013.3.