HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

工程热物理论文集锦9篇

时间:2022-10-04 04:17:40

工程热物理论文

工程热物理论文范文1

    摘要本文中,我们讨论将物理学史与物理科学知识进行融合讲述的途径及其意义。在“大学物理”课程教学过程中,课堂上的绝大部分时间被用来进行科学知识的讲述,而物理学史的相关内容往往被放弃。这种教育方式使得学生只能被动地从逻辑上去接受所有的物理知识,对物理学的探索和发展过程却一无所知,进而影响了科学文化传播以及科学精神的培养。本文探讨在课堂上适当引入物理学史的内容,并且将物理学史与物理科学知识放在同等地位进行讲授。我们建议将“物理学史”作为核心内容的一部分加入到《理工科类大学物理课程教学基本要求》之中。这种改变将有助于学生培养科学精神,了解科学研究的过程和方法,获得正确评价科学事业的能力。

关键词物理学史;教学科研;科学方法论;教学法

作者:汪洋    秦刚    耿平(哈尔滨工业大学(深圳),理学院,深圳518055)

物理学本身不仅仅包括物理科学知识,还包括与之相关的发现历程,以及涉及其中的科学精神和研究方法。这一切综合在一起,组成了人类历史的重要组成部分——物理学史。如果我们完全摒弃物理学史,那么物理学教育将完全沦为教授科学知识使用方法的过程。然而,如果我们想要培养学生的科学精神,那么就应该将物理学史与物理科学知识放在平等位置进行对待。在这篇文章中,我们首先讨论物理学发展的客观规律以及物理学史的独特价值。进一步,讨论将物理学史融入“大学物理”课堂的途径。最后,讨论物理学史在当今中国的物理教育中可能起到的作用。

1历史发展的非逻辑性

物理学中,当一个新观念被牢固建立以后,人们往往发现新的观念以简洁清晰的方式解释了相关的物理现象。所有一切看起来都是那么自然,就像是逻辑分析得出的必然结果一般。但是,如果从历史的角度来看,新观念的发现过程经常是一波三折,至少是在逻辑上看来并不是那么显然。历史上,一个新观点最初提出来的时候,往往是在建立在旧的知识框架下,所以处在萌芽状态的新思想不可避免受到老观点的束缚。在进一步的发展过程中,人们不断提出疑问,把其中错误的成分剥掉,使之建立在牢固的数理基础上,逐渐发展成逻辑严密的形式。

在这个探索过程中,当旧的理论与实验数据出现不可调和的矛盾时,纯粹的逻辑推理很难跨越这道鸿沟,而物理直觉能够帮助科学家提出新的思想来解决问题。逻辑推理固然重要,但是物理的直觉却往往是揭开谜底的第一步。所以,物理的发展过程不可能是一个简单的逻辑推导过程,而这一点从物理学史的角度来看是非常清楚的。如果是纯粹逻辑方式的从理论上进行讲授,则无法让学生了解物理学发展的真实过程。

2引入物理学史面临的问题

如果我们以现代的、逻辑严密的观点来讲述物理,这种讲解将会是简洁而富有效率的,没有太多含糊之处,能够让学生在最短的学时内学到最多的科学知识。然而,如果从历史的发展过程来讲述物理知识却往往要付出一些代价。由于历史的发展本身就没有严格的逻辑,导致这种讲述方式也是迂回曲折的。如果从单位时间内获取的知识点的数量上来看,从历史的角度进行讲述并不划算。但是,从培养学生物理思想的角度来讲,仅仅用知识点的数量对教学效果进行衡量是片面的,因为科学精神的培养是同样重要的。

简单分析一下国内市面上最常用的教科书,我们就可以清晰发现,在多数情况下,中国物理教育采取的方案是以现代观点来讲述物理,追求最大的效率为目的。而物理学史有关的往往写得干净简洁,主要用于提供一些科学家的名字和科学发现的时间节点。在课堂上,教师的角色是以最简洁清晰的方式讲述知识,而学生的角色是用正确的方法求解出习题,理解科学知识。这种讲授方式在一定程度上给学生造成一种错误的直觉,即,物理学的发展就是逻辑推导过程,而且只能朝着正确的方向发展。这种思想一旦形成,会导致学生迷信书本知识。因为书本上的知识全部都是基于逻辑,应该不会有错,进而严重阻碍学生的怀疑精神和创造力。

3引入物理学史的意义

引入物理学史的目的,绝不是简单地增加兴趣,帮助理解科学知识。而是从根本上引导学生批判思维,独立思考能力,以及科学价值观念的方面的培养。对于学生而言,这些科学精神方面并不是自觉就能够发生的。绝大部分情况下,学生不会追问历史的来龙去脉,他们只会努力学会掌握和使用这些科学知识.对于大部分学生而言,科学精神的培养需要教师的引导才能进行,而物理学史将会在培养学生科学精神方面起到重要作用。如果学生能够了解物理发展的真实过程,他们自然就会明白批判眼光和独立思考在物理发展过程中的重要价值,知道一个个物理概念如何发展到现在的样子。也自然会知道,物理学家是在不断地尝试中用尽一切手段去寻找答案,而并不是只有冷静的逻辑思考。而这些培养,在一个纯粹讲述科学知识的为目的的课堂里面是不可能做到的。

热力学中“卡诺定理”的发现史就是一个富有启发的例子[1,2]。18世纪的时候,人们发明了蒸汽机,接下来如何进一步提高蒸汽机效率成为当时的重要问题。1824年,法国的年轻工程师卡诺(SadiCarnot,1796—1832)发表了《关于火的动力和适合发展这种动力机器的思考》一文,提出下面的问题:“热的动力是否有限?蒸汽机的改进是否存在以任何方式都无法逾越的极限?”在理论上,他提出下面的任务:“为了以最一般的方式考虑热的运动产生的原理,就必须独立于任何机制或任何特定的工作介质。有必要建立不仅适用于蒸汽机,而且适用于所有可想到的热机的原理,不论其工作物质是什么,以及它所采用的运转方法是什么。”接下来的论证,采用了两个前提条件:(1)第一类永动机不可能实现。(2)热质论。热的传递是由于热质的流动。热质无重量,不会产生也不消失。通过考察蒸汽机的工作流程,卡诺认为蒸汽机的产生动力是由于蒸汽机将热质从高温物体(熔炉)转移到了低温物体(冷凝器),进一步他断言这一原理适用于任何由热引起运动的机器,并且明确提出:“单独提供热是不足以产生推动力的,必须要有冷;没有冷,热就没有用了。”接着,卡诺描述了一种由两个等温过程和两个绝热过程组成的可逆循环,这就是著名的卡诺循环。他根据第一类永动机不可能实现和热质论这两个前提,证明了没有任何热机能够产生比卡诺循环更多的动力,并得出结论:“使用蒸汽所产生的最大动力,也是其他任意方式所能得到的最大动力。”这就是卡诺定理的最初描述,换成现在的方式来讲:热机必须工作在不同温度的热源之间,工作在相同高温热源和低温热源之间的一切可逆机都有相同效率,不可逆热机效率不可能大于可逆热机的效率。从这一段历史里面,我们可以看出:(1)真理的发现往往不是一蹴而就的。卡诺采用的“热质论”,现在看来是不对的,导致论文中也有部分不正确的结论。但是他关于卡诺定理的描述是正确的.这为提高热机效率指明了方向,并且包含了热力学第二定律的基本内容。后来,克劳修斯(RudolfClausius,1822—1888)在卡诺工作的基础上去掉了热质假说,提出了热力学第二定律的克劳修斯表述。(2)物理直觉和想象力在物理规律的发现过程中起到重要作用。卡诺从蒸汽机产生动力同时需要高温物体和低温物体得到启示,提出“单独的热源不能产生推动力”这个重要观点。(3)物理学发展的非逻辑性。按照逻辑来讲,热力学第二定律的建立应该在第一定律建立以后,可是历史上发展顺序正好是反过来的。(4)物理学发展的阶段性。通过介绍物理学史上的真实案例,使学生明白物理观点处在不断地更新过程中,从而潜移默化地培养学生的批判眼光和独立思考能力。

4在“大学物理”课程中引入“物理学史”的途径

为了探究在“大学物理”课程中引入“物理学史”的途径。笔者在哈尔滨工业大学(深圳校区)开设了16学时的“物理学史”通识选修课程,其中的内容涵盖如下:第一章古代物理知识(1.1古希腊时期的物理知识,1.2中国古代的物理知识,1.3欧洲中世纪与阿拉伯世界);第二章力学的发展(2.1近代科学的萌芽,2.2运动学的奠基人—伽利略,2.3牛顿的贡献);第三章光学的形成(3.1光学的历史概述,3.2光的波动说与微粒说之争,3.3光谱的研究,3.4光速的测定);第四章电磁理论的建立(4.1人类对电磁现象的早期认识,4.2富兰克林对雷电的研究,4.3库仑定律的发现,4.4从静电到动电,4.5电磁学的创立,4.6法拉第的贡献,4.7麦克斯韦电磁场理论的建立,4.8电磁波的发现);第五章热学发展史(5.1早期热学发展简述,5.2从量热学到热力学,5.3热力学第二定律的建立,5.4热力学第一定律的建立,5.5分子运动论与统计物理学);第六章十九世纪末的三大发现(6.1物理学革命;6.2电子的发现;6.3天然放射性;6.4黑体辐射);第七章狭义相对论的建立(7.1牛顿力学的危机;7.2从伽利略变换到洛伦兹变换;7.3爱因斯坦的相对论;7.4欧氏时空与四维时空);第八章量子理论的建立(8.1紫外灾难和普朗克的量子假说,8.2光量子学与波粒二象性,8.3玻尔的原子结构理论,8.4量子理论的发展)。根据笔者的教课经验,16学时基本上能够覆盖上述内容,让学生对物理学历史有一个较为完整的了解。

“大学物理”课程是大学理工科的基础课程,其内容涵盖力学、电磁学、振动和波动、几何光学、热学、狭义相对论,量子物理和原子物理。比照“大学物理”和“物理学史”的课程内容,可以发现两者是相互契合的。相对于其他的物理专业课而言,“大学物理”这门课程知识覆盖面广,能够非常方便地将整个“物理学史”(从古希腊一直到近代)的主要内容与物理学科学知识进行融合。按照现在的教法,“大学物理”和“物理学史”被分成了两门课程,分别进行讲授,而且“物理学史”一般也不是必修课。笔者认为如果能够将“大学物理”和“物理学史”融合在一起进行讲授,教学效果会比单独讲授更好。此外,鉴于物理学史对培养学生科学精神起到的独特作用,应该把这部分内容作为必修的核心内容进行要求。根据高等学校物理基础课程教学指导分委员会编制的《理工科类大学物理课程教学基本要求》(2010版)相关要求,“大学物理”课程核心内容学时数不少于126学时。在这126学时的教学内容基本要求中,并没有对“物理学史”做出单独的要求。笔者建议将“物理学史”作为核心内容的一部分加入到《基本要求》之中,推荐学时为16学时。从而将总的学时从以前的“不少于126学时”,增加为“不少于142学时”。

5结语

西方的自然科学起始于公元前五百多年的古希腊。伟大的古希腊先贤们提出了许多光辉思想,如毕达哥拉斯的琴弦定律,德谟克利特的原子论,亚里士多德的物理哲学,阿基米德的杠杆原理和浮力定律等等。古希腊文明结束之后便进入罗马时代,罗马民族比较注重知识的实用性,在物理方面鲜有建树。而罗马帝国衰落后,欧洲便进入长达千年的黑暗中世纪时代,整个西方物理学的发展进入停顿状态。一直到十五世纪中叶,伴随着欧洲文艺复兴运动,西方物理学才得重新焕发生机,逐渐发展到今天的蓬勃局面.在这个曲折发展的历程中,逐步形成了西方科学的文化和传统。

与西方国家不一样,中国在历史上没有能够系统地发展出自然科学。这就导致在中国的文化中,缺少自然科学的成分。长久以来,我们对于如何培养学生的科学精神并没有经验可循。在这方面,物理学史能够给我们提供最原始的材料,从中可以了解科学研究的过程,学习研究方法,培养科学精神。物理学史以及其他的科学史对于中国学生的科学精神培养具有独特价值。这种价值在过去几十年中是被埋没的。我们呼吁将物理学史的作用发掘出来,将物理学史作为核心内容加入到《理工科类大学物理课程教学基本要求》之中,走出一条将物理学史与物理科学知识相互融合的教育之路。

致谢:本文在写作过程中,受到金晓峰教授的启发,在此表示衷心感谢!

参考文献

工程热物理论文范文2

关键词:有限时间热力学;范德瓦尔斯气体;埃里克森循环;优化性能

中图分类号:TK212 文献识别码:A 文章编号:1001-828X(2015)024-000-02

一、引言

本文建立以范德瓦尔斯气体[8]为工质的埃里克森热机模型[9,10],探讨范氏方程中相互作用修正参数a和埃里克森循环两等压过程的压强比对循环功率和效率的影响。所得结论可为埃里克森热机的研制和优化设计提供理论依据。

二、范氏气体的热力学性质

理想气体方程应用到真实气体,必须考虑到真实气体的特征,予以必要的修正。上世纪以来,许多物理学家先后提出了各种不同的修正意见,建立了各种不同形式的气体状态模型,其中形式较为简单,物理意义比较清楚的就是范德瓦尔斯方程。对于1mol的气体系统,范德瓦尔斯方程可表为

式中R为气体普适常量,a和b为两修正参量。b是考虑到气体分子本身体积的修正量。对于给定的气体,b是一个恒量,可由实验来测定,一般约等于1摩尔气体分子本身体积的四倍。参量a是由气体分子间的相互作用引起的,决定于气体的性质,可由实验来测定。

三、范氏气体的内能

六、可逆埃里克森热机的性能

1.可逆埃里克森循环

埃里克森循环是热机的一种重要循环模型,由两个等温过程和两个等压过程组成。图1表示以范氏气体为工质的可逆埃里克森循环的T-P图,图中T1和T2分别是两个等温过程的温度,p1和p2分别是两个等压过程的压强,QT1和QT2分别是工质在两个等温过程从高温热源吸收的和放给低温热源的热量,Qp1和Qp2分别是两个等压过程(回热过程)工质从回热器吸收和放给回热器的热量。

现在,我们来分析每一个过程工质吸热或放热的情况。1-2为等温膨胀过程,该过程工质从高温热源吸收热量。根据式(20)可得吸热:

2.可逆埃里克森循环性能分析

从(35)式可知,以范氏气体为工质的可逆埃里克森热机的效率总是小于卡诺效率 。式(35)中没有b的一次项,说明对可逆埃里克森热机,范氏气体状态方程对理想气体的修正主要体现在气体分子相互作用的参数a上,而气体分子本身体积的修正参量b对效率的影响较小。

为探讨可逆埃里克森热机两等压过程的压强比对热机效率的影响,将(35)式化为

图2给出参数δ取不同值时热机的效率η与压强比χ的关系曲线,其中。从图中可以看出,随着压强比的增大,可逆埃里克森热机的效率不断减小。同时,还可以看出,对于给定的和,循环效率η随δ的增大而减小。

本文研究了以范德瓦尔斯气体为工质的埃里克森热机的优化性能,导出了以范德瓦尔斯气体为工质的可逆埃里克森热机的效率的表达式。获得了一些有意义的新结论。

在今后的研究中,我们将在本文的基础上,进一步考虑其不可逆因素,如工质内部循环的不可逆、热漏和摩擦等因素的影响,研究与实际热机更加贴近的循环的优化性能,为热机的优化设计提供一些新的理论依据。

参考文献:

[1]严子浚.卡诺热机的最佳效率与功率间的关系[J].工程热物理学报,1985,6(1):1.

[2]严子浚.有限时间热力学中不可逆卡诺热机[J].热能动力工程, 1994,9:369.

[3]严子浚.不可逆卡诺制冷机的有限时间热力学研究[J].低温与特气,1995(2):13.

[4]田鑫泉,严子浚.热漏对内可逆卡诺循环性能的影响[J].大学物理,1995,14(5):11.

[5]解文方.有限传热下斯特林热机的最佳优化关系[J].纺织基础科学学报,1994,7(1):21.

[6]陈金灿,严子浚.太阳能热泵的有限时间热力学分析[J].厦门大学学报,1994,33(3):333.

[7]陈金灿,严子浚.有限时间热力学理论的特征及发展中几个重要标志[J].厦门大学学报, 2001,40(2):431

[8]左庆寿.范氏气体的热力学过程[J].北京师范学院学报,1990,11(1):71

工程热物理论文范文3

摘要:通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力。

关键词:工程热物理 冰箱制冷剂 理论循环分析 CF3I CF3I/HC290

1 引言

冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2],寻求新型环保节能的冰箱工质仍是人们研究的方向。

三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3],饱和蒸汽压曲线与CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4])。关于CF3I的热物性,只有文献[3]进行了较为系统的研究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3]的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。

2 理论循环分析的工具

2.1 PT状态方程两参数F、ζc的求解

PT状态方程[5]的具体形式为:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

而是方程(8) 的最小正根。

(8)

式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3]给出其Pc=3.953MPa,Tc=396.44K[3]。ζc、F的求解方法如下:(1)选取n个饱和液相数据点(T、P、ρL)i (i=1,…,n);(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;

(4)由汽液平衡条件fL=fV,输入某数据点i的(T、P)i,由式(1)、(2)求出αi;(5)由n个数据点的(Ti,αi)用最小二乘法拟合式(3),求出F;(6)由ζc和已求出的Ωa,Ωb,Ωc,F,根据方程(1) ~(2)和汽液平衡条件计算各点的与的相对误差,以及个数据点的平均相对误差;

(7)以一定的步长改变ζc,重复步骤(3)-(6)。选取最小EYL所对应的ζc、F作为PT方程的参数。

文献[3]给出了CF3I在301K-Tc范围内的25个饱和液相密度点,其中3个数据点是为了确定临界点而测的;把这3个数据点当作一个临界点对待,选取其余22个数据点按照上面的步骤求解得到CF3I的F=0.6514、ζc=0.3105。

2.2 PT状态方程精度的验证

为了检验如上确定的适用于CF3I的PT方程的计算精度,以该方程对CF3I的饱和液密度、饱和蒸汽压、气相区PVT性质进行了计算,并与文献[3]的实验数据进行了对比。对比实验数据为T<0.9Tc(即T<356.80K)范围内的13个饱和液相点、22个饱和蒸汽压点和T<Tc内77组气相区数据。结果表明,饱和液密度、饱和蒸汽压、气相区密度的最大相对误差分别为2.94%、0.42%、5.87%,平均相对误差分别为1.54%、0.25%、2.17%。相对误差、平均相对误差计算式分别为

(9)

(10)

式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。

冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6],处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。

3 CF3I蒸汽压曲线的分析

从热力学角度看,替代制冷剂最好具有与原制冷剂相似的蒸汽压曲线[7]。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3]

(11)

式中,

A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8]。

由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线与CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a与CFC12之间,在冰箱名义工况下与CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290与CF3I组成混合物,灌注式替代CFC12的效果可能会更好。

4 CF3I作为冰箱制冷剂的循环性能分析

4.1 冰箱名义工况

采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度与压缩机的吸气温度相等,这一温度称为回热温度。

计算CF3I的循环性能所需的理想气体比热式[3]为:

(8)

式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。

在冰箱名义工况下,设压缩机的总效率为0. 70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。

观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond与CFC12都很接近。CF3I的压力水平与CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比与CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但与MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出:(1)CF3I的循环性能指标与CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290与CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。

4.2 变工况

变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般在环境中[1],回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋势。

结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有轻微地上升。由图还可以发现,CF3I与HC290的循环性能指标分布在CFC12的两侧。

CF3I各项性能指标随回热温度的变化所表现的规律与CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。

5 CF3I/HC290混合物作为冰箱制冷剂的循环性能分析

5.1 冰箱名义工况

由以上分析可知,CF3I与HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。

计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。

由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋势,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。

对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标与CFC12吻合得很好。

5.2变工况

对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能与CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。

图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也与之相近。

5.3 可燃性分析

以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9],以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10]指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是安全的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的安全性是可以得到保证的。

6 结论

(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。

(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能与CFC12相近。

(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能与CFC12十分接近,可作为CFC12的灌注式替代物。

参考文献

1 何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1):10~14

2 梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1):57~60

3 段远源.三氟碘甲烷和二氟甲烷的热物理性质研究:[博士学位论文].北京:清华大学,1998

4 DoddD.E.etc.FundamentalandAppliedToxicology,1997,35:64

5 NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringSci ence,1982,37(3):463~473

6 王建栓.碳氢化合物在家用小型制冷装置中的替代研究:[硕士学位论文].天津:天津大学,2000

7 刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州:浙江大学出版社,1992,73~76.

8 1993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993

工程热物理论文范文4

摘要:通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力。

关键词:工程热物理 冰箱制冷剂 理论循环分析 CF3I CF3I/HC290

1 引言

冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2],寻求新型环保节能的冰箱工质仍是人们研究的方向。

三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3],饱和蒸汽压曲线与CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4])。关于CF3I的热物性,只有文献[3]进行了较为系统的研究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3]的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。

2 理论循环分析的工具

2.1 PT状态方程两参数F、ζc的求解

PT状态方程[5]的具体形式为:

而是方程(8) 的最小正根。

式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3]给出其Pc=3.953MPa,Tc=396.44K[3]。ζc、F的求解方法如下:(1)选取n个饱和液相数据点(T、P、ρL)i (i=1,…,n);(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;

式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。

冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6],处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。

3 CF3I蒸汽压曲线的分析

从热力学角度看,替代制冷剂最好具有与原制冷剂相似的蒸汽压曲线[7]。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3]

式中,

A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8]。

由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线与CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a与CFC12之间,在冰箱名义工况下与CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290与CF3I组成混合物,灌注式替代CFC12的效果可能会更好。

4 CF3I作为冰箱制冷剂的循环性能分析

4.1 冰箱名义工况

采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度与压缩机的吸气温度相等,这一温度称为回热温度。

计算CF3I的循环性能所需的理想气体比热式[3]为:

式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。

在冰箱名义工况下,设压缩机的总效率为0. 70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。

观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond与CFC12都很接近。CF3I的压力水平与CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比与CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但与MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出:(1)CF3I的循环性能指标与CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290与CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。转贴于

4.2 变工况

变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般裸露在环境中[1],回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋势。

结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有轻微地上升。由图还可以发现,CF3I与HC290的循环性能指标分布在CFC12的两侧。

CF3I各项性能指标随回热温度的变化所表现的规律与CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。

5 CF3I/HC290混合物作为冰箱制冷剂的循环性能分析

5.1 冰箱名义工况

由以上分析可知,CF3I与HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。

计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。

由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋势,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。

对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标与CFC12吻合得很好。

5.2变工况

对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能与CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。

图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也与之相近。

5.3 可燃性分析

以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9],以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10]指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是安全的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的安全性是可以得到保证的。

6 结论

(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。

(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能与CFC12相近。

(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能与CFC12十分接近,可作为CFC12的灌注式替代物。

参考文献

1 何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1):10~14

2 梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1):57~60

3 段远源.三氟碘甲烷和二氟甲烷的热物理性质研究:[博士学位论文].北京:清华大学,1998

4 DoddD.E.etc.FundamentalandAppliedToxicology,1997,35:64

5 NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringSci ence,1982,37(3):463~473

6 王建栓.碳氢化合物在家用小型制冷装置中的替代研究:[硕士学位论文].天津:天津大学,2000

7 刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州:浙江大学出版社,1992,73~76.

8 1993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993

工程热物理论文范文5

关键词:核反应堆 热工水力 教学 探索

中图分类号:G64 文献标识码:A 文章编号:1674-098X(2015)09(a)-0113-02

核反应堆热工本科专业是核工程与核技术的核心专业课之一。核反应堆热工是一门工程性较强的课程,它着重讲述了反应堆热工的基础理论和一些分析、计算方法,是核能科学与工程专业方向的一门专业主干课程。核反应堆热工课程实际上是一门较难的课程,因为它要求的课程基础较多,课程内容较为复杂抽象,能实践的内容较少。因此,各大开设核专业的高校对这么课程的教学都十分重视,如何能较好的开展核反应堆热工课程的教学已经成为高校教育中的一个难题。该文结合核反应堆热工课程的教学实践,通过教学内容的编排、教学模式的改善开展了一些教学的创新探索,收获了一定的效果。

1 核反应堆热工课程概况

核反应堆热工课程是核工程专业的必修课,其的性质和任务是分析燃料元件内的温度分布、冷却剂的流动和传热特性以及预测在各种运行工况下反应堆的热力参数,以及在各种瞬态和事故工况,压力、温度、流量等热力参数随时间变化的过程。要求学生前修课程包括反应堆物理分析、核反应堆工程原理、流体力学、传热学、高等数学、数值分析等。核反应堆热工课程的主要教学内容包括堆的热源及其分布、堆的传热过程、堆内流体的流动过程及水力分析、堆芯稳态热工分析及堆芯瞬态热工分析,此外还要求学生对传热学方面的知识非常了解。该课程40个学时,占2.5个学分,一般上课人数为40~50人。开设该课程的目的在于培养学生能够掌握反应堆领域热工水力学的基本分析方法,运用先修课程流体力学、传热学、工程热力学和反应堆物理中学到的基本概念、基本公式和基本结论,以压水堆堆芯为主要分析对象,达到既了解反应堆稳态工况下的工作情况以及在瞬态工况下的变化特点,又能训练和培养独立分析问题的技能和能力。通过该课程的学习为学生在毕业后从事核反应堆安全分析和设计运行等工作打下坚实的理论基础并提供有益的工程借鉴。

核反应堆热工课程的主要特点有以下几方面。

(1)课程基础多。热工课程不仅要求学生对核反应堆无力分析的知识非常了解,还需要掌握核反应堆工程的专业知识,在具体的知识点学习中,还需要了解传热学的知识。在进行具体的热工设计中,还需要流体力学方面的知识,进行计算时,高等数学、线性代数及数值分析等基础理论的知识也不少。因此,要求如此多的课程基础,少了任何一门都会使学生觉得此课程非常的有难度。

(2)课程内容抽象。从以上的介绍可以看出,课程中的许多内容涉及到很多基本概念和公式,在一一进行推导的时候十分的枯燥,难以引起学生的兴趣。而且,课程的内容一环套一环,如果刚开始的课程学生没有认真的学习,出现脱节现象,到后面的章节,学生学习起来难度将非常大。这也就导致学生在后面的学习失去了学习的热情和信心。

(3)实践的环节少。因为课程内容涉及到热工水力和反应堆,但无论是流体力学还是反应堆,学校都不具备进行实验的条件,这也就给本来枯燥、难度较大的教学内容带来了更打的困难。

针对以上核反应堆热工课程的特点,在教学过程中,我们采取了一些创新的教学探索,以期实现提高学生学习兴趣,改善教学效果的目的。

2 教学创新探索

针对核反应堆热工课程的特点,在教学过程中,通过以下几个方面展开了教学创新探索。

2.1 抓好绪论课的教学

绪论课是教学的起点,有非常确定的目标,具有非常强的导向性。教师只有对课程的理解、掌握和控制到达了一定程度,才能在绪论课上将学生对教材的学习起到引领、提示和导向等作用,可以启发学生对课程的兴趣。通过绪论课使学生对这门课程的整体框架建立一个初步感观,了解学习内容、明确学习方向、掌握学习方法、认识课程的前沿动态,进一步解决“为何学、学什么”和“如何学”三个问题,从而充分调动他们日后学习该课程的积极性。尽管每门课程的内容都不尽相同,但绪论课的主要的模式大致相同。绪论课的授课方式主要有以下几个特点:从整体上介绍本课程、绪论课的内容求全不求精以及绪论课授课形式以老师讲授为主。

俗话说得好:“良好的开端是成功的一半”。结合多年的教学经验深刻体会到绪论课的重要性,可以说上好了绪论课,这个学期的教学就成功了一半。由于绪论课在整个课程内容中的特殊性,采取以上教学形式可以对学生进行有效引导,使学生快速地明白本课程的主旨和篇章结构,熟悉教材的知识系统,发挥主动学习课程的积极性,初步了解本课程的一般理论和研究方法[1-2]。但对于课程内容较为复杂、抽象和枯燥的课程,采取这种方式来组织绪论课的教学,未必能取得较好的效果。核反应堆热工这门课程主要涉及到传热学、热工水力、核反应堆物理分析等相关内容,各种物理原理、化学方法完全靠语言上的讲解十分的枯燥,完全采用老师讲授的方式,学生听起来费劲,效果也很差。因此,有必要重新考虑核反应堆热工绪论课的组织形式。通过认真的调研,本课程从重新编排绪论课的教学内容和调整绪论课的教学模式等方面对绪论课的教学进行了创新探索。

由于核反应堆热工课程的内容十分的庞杂,要想在短短的2个学时内,将这些内容面面俱到的一一介绍,有一定的难度,也没有必要。因此在本课程的编排上,必须对本课程的教学内容进行精简,重新编排教学内容的原则是以点带面。由于学生在前面的课程里已经上过一些专业课,对核反应堆物理分析的基础知识有了一定的了解,因此这部分的内容可以有一定的删减,既能对知识进行回顾,又要能引起学生们的兴趣,这是对这部分内容的编排要求。对于后面具体的课程专业知识介绍,则挑重点介绍,而不是一一涉及。这样重新编排绪论课的教学内容既继承了传统绪论课授课方式的优点,又在这个基础上有新的突破。学生们听起来既不会为庞杂而系统的知识感到厌倦,同时有兴趣的知识点的深入探讨又会引起他们足够的兴趣。虽然重新编排了教学内容,还是不能从根本上解决绪论课冗长的难题。因此,本课程也借鉴了研究型教学的模式。研究型教学是指在教学环节与过程中,有效促进教师主导地位与学生主体地位的双向互动、并有机融合课程大纲与内容、研究选题与实践、学生个性兴趣与专业发展的多维统一从而教学相长的新型教学方式与课改实践[3-4]。

2.2 使用好多媒体课件

多媒体课件是将文字、图形、声音、动画、影像等多种媒体融为一体,将其于教学中,可以节省教师板书、画图等大量的时间,在相同的时间单元,可以给学生提供更多更大的信息量,拓展了学生的视野和思维,是传统的“黑板+粉笔+教材”教学方法无法比拟的,而且显示出了巨大的优势。多媒体课件辅助教学在推动教育教学现代化、提高课堂教学效果等方面所起的积极作用是无可厚非[5]。在核反应对热工课程中,使用多媒体课件尤其是视频资料是非常适合的。因为在反应堆热工课程中,许多热工水力的原理及实验是暂时没有条件在现场或是实验室展示的,因此通过视频的方式来展现就变得尤为重要了,例如核电站核岛内一回路管道、二回路管道内流体流动以及温度分布等特点,通过讲述的方式难以理解,而如果引入视频的方式来展现就会变得特别直观,易于学生理解。但多媒体课件的使用也存在一些问题,例如课程中视频的时间不能过长,否则学生只看视频的话,虽然印象深刻,但对于原理性的内容的理解反而不容易。

2.3 做好课程设计

核反应堆热工课程内容非常多,需要检验学生对重点知识点的掌握和理解,以及是否有能力对这些知识加以综合运用,解决核反应堆热工中的问题。课程设计是一个非常好的选择,通过课程设计,可以使学生对课程的内容的理解更为深刻,同时也锻炼了他们的动手能力。例如,课程设计要求学生针对某压水堆燃料组件热工水力稳态特性进行分析计算,通过独立编程计算锻炼学生综合应用课本理论知识的能力和计算机编程能力,为学生毕业后从事核反应堆程序开发工作打下基础。例如,基于课程设计指导书内容,利用单通道模型思想对压水堆燃料组件的热工水力特性进行稳态分析计算,要求独立编程计算,给出计算结果图,并撰写课程设计总结报告。例如基于课程设计指导书内容,利用单通道模型思想对压水堆燃料组件的热工水力特性进行稳态分析计算,要求独立编程计算,给出计算结果图,并撰写课程设计总结报告。这些都是可以进行的课程设计内容。

3 教学实践

基于以上的讨论,我们展开了对核反应堆热工课程的教学实践。在教学实践的过程中,认真做好绪论课的教学工作。根据学生们反馈,明显能感觉到学生们对绪论课上教学内容的兴趣得到了明显的提高。在教学实践过程中,做好多媒体课件的使用工作。很多同学在观看多媒体课件时,尤其是播放核电站管道系统内流体流动的视频时,很多同学都非常仔细的观看。视频观看完毕后,有些同学立刻提出了自己的疑问,希望了解核电站内流体流动的具体情况。可见,在教师的引导下,学生们会自然而然的对核反应堆热工课程的内容产生了具体的兴趣。可见,多媒体课件特别是相关视频的播放,也对提高学生们的学习兴趣发挥巨大的作用。课程设计过程中,学生们展现的主观能动性给任课老师也留下了非常深刻的印象,他们不仅学习热情高,而且在课设过程中往往能有很多意想不到的创新性工作,使得这些课程设计在课程教学过程中发挥了巨大的作用。

4 结语

核反应堆热工课程具有一定的难度。该文结合了核反应堆热工课程的教学实践,讨论了在核反应堆热工课程中可以采取的创新教学模式。通过抓好绪论课的教学,多媒体课件的使用以及课程设计等手段,提高核反应堆热工课程的教学质量。实践结果表明,这些手段都能在核反应堆热工课程的教学过程中,发挥正面的作用,起到了良好的效果。

参考文献

[1] 仝卫卫,王彩虹.《高等数学》绪论课教学方法浅谈[J].中国西部科技,2015,14(1):97-98.

[2] 杨燕霞.教师课堂的“首场秀”――浅谈关于“质量检验”绪论课的重要性[J].教育艺术,2015(5):32.

[3] 张琳,王佳.高校学科基础课程研究型教学模式的实践探索[J].教育教学论坛,2015(18):113-114.

工程热物理论文范文6

关键词:传热学;教学改革;课程建设;创新能力

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)33-0071-02

面对社会对人才培养的需求,2012年普通高等学校本科专业目录将建筑环境与设备工程专业、建筑智能设施(部分)、建筑节能技术与工程三个专业合并,调整为建筑环境与能源应用工程专业[1]。建筑环境与能源应用工程专业是工学土木类4个本科专业之一,与土木工程、建筑学、环境科学与工程、能源与动力工程等专业交叉,专业范围扩展为建筑环境控制、城市燃气应用、建筑节能、建筑设施智能技术等领域。

在“重基础、宽口径”的形势下,夯实基础、凝练特色、优化课程体系成为专业教学改革的核心问题之一。辽宁工业大学建筑环境与能源应用工程专业作为辽宁省普通高校本科重点支持专业,经过多年的发展,形成了“夯实专业基础、强化工程实践、注重创新、培养专业素质高和实践能力强的应用型工程技术人才”的专业特色。笔者所在的传热学课程教学团队在课程内容体系、教学方法改革等方面不断探索、实践。本文以辽宁工业大学建筑环境与能源应用工程专业为例,从传热学的课程定位出发对课程内容优化、案例分析的运用、新成果的吸纳、师资力量建设以及教学方法改革措施等进行探讨。

一、课程描述

1.在培养方案中的定位

传热学是建筑环境与能源工程专业的一门主干专业基础课[2],它建立在专业基础课工程热力学、流体力学之上,主要讲述建筑环境与能源应用工程专业所涵盖的暖通空调、供热工程、制冷技术、锅炉房工艺与设备等工程技术中共同的热量传递规律的科学。学生通过传热学课程的学习,可获得热量传递的基本理论、基本知识和基本技能以及传热计算的基本方法,培养学生的思维能力、分析和解决实际工程问题的能力,为学习后续课程打下必要的基础,并通过设计、实验、实习等实践教学的配合,掌握热工设备设计、提高能效等基本理论和方法,形成初步的工程实践能力。

2.与其他课程的关系

如果把本科生专业知识体系构建过程比作是教学生如何建造房子的过程[3],那么基础课和专业基础课是教会学生如何打造房子基础的过程,专业课就是教会学生如何在基础上建造各种房子的过程。传热学作为一门核心的专业基础课,其本质是一门科学,内容相对稳定,每一个进步都会带来技术上质的变化。剖析传热学课程与其他课程之间的关系,探讨教学与学生认知过程的契合,是提高教学质量的基础。

(1)与流体力学和工程热力学课程的关系。流体力学和工程热力学是传热学的先修课程。学生通过课程的学习掌握热现象中物质能量平衡的关系及流体流动过程的力学性质和边界特点。通过基本概念、基本理论和实际应用,为学生进入建筑环境与能源应用工程专业课学习打下坚实的基础知识。同时,积极引导学生对物理概念、物理现象本质的理解,培养学生科学的思维方法。

(2)与暖通空调、热质交换原理与设备、供热工程、制冷技术、锅炉房工艺与设备等专业课的关系。这五门课程的共性问题包括热量传递过程、换热设备的类型及适用范围、换热器的设计计算与校核计算、换热过程的强化与削弱等,上述理论知识均涵盖在传热学的教学内容中。在传热学教学过程中,应概述其基本理论在其他专业课中的应用,并结合相关专业工程实例掌握传热学的基本理论,帮助学生正确理解传热学在专业课学习中的重要性。

(3)与认识实习和生产实习的关系。传热学课堂教学安排在认识实习实践环节与生产实习实践环节之间。认识实习环节帮助学生认识各类换热器的形式和功能,生产实习环节安排冷热源系统中换热器运行调试的相关内容,帮助学生巩固课程所学的理论知识,并将理论与实践相结合。

(4)与课程设计和毕业设计的关系。传热学为课程设计和毕业设计实践环节提供围护结构传热计算及各类换热器(如散热器、地埋管换热器、空气处理机组、一次网/二次网换热器、蒸发器、冷凝器、余热回收装置等)设计计算的基本理论和基本方法。通过实际工程案例的引入,使学生体会相关理论和方法的应用过程,帮助学生初步形成分析、计算与解决工程问题的能力。

二、课程建设

在专业课程体系建设中,如果每门课都片面强调自身科学的、系统的、完整的、严密的体系,势必引起专业培养方案学时的不适当膨胀。因此,将整个专业知识结构设计成为一个科学的、系统的、完整的、严密的体系,所涉及的课程服从整个体系的需要,可以使每门课程在专业知识结构中起到恰如其分的作用。在上述思想的指导下,围绕传热学课程建设提出了如下措施:

1.突出建筑环境与能源应用工程专业中传热学共性的提炼

在绪论部分引导学生认识传热学的任务、基本要求及在专业学习中的重要性。通过对传热学功能与作用的阐述,帮助学生在专业知识体系中恰当定位。传热学作为具有百年历史的经典学科,内容极其丰富,也早已自成体系,核心理论包括传热的三大基本理论模块――导热、对流和辐射,外延理论模块包括凝结、沸腾和质交换。课程理论性和逻辑性强,符合学生学习活动的心理逻辑。根据上述特点,以能量守恒定律为主线,串联起导热、对流和辐射三个理论模块,适当涉及到凝结、沸腾和质交换等相关外延理论模块。按照热量传递机理、传热过程计算方法、增强或削弱传热措施等方面归纳三类基本传热方式的共同性与区别,以及在建筑环境与能源应用工程领域的典型应用。

2.提高案例分析在课程内容中的比重

传热学理论分析较多,公式复杂且难以理解,因此在理论教学中通过典型案例来揭示抽象理论更容易被学生接受。可以通过授课中案例导入、小结中典型案例分析应用以及布置大作业等不同的方式开展,使学生深入理解基本概念、原理,并学习如何利用课程理论与方法解决实际工程问题。

3.适时吸纳本学科的创新成果

随着传热学学科的不断发展,许多新成果不断被应用于建筑环境与能源应用工程领域,这些新的知识也逐渐被引入到传热学教学中。例如微尺度传热学、生物传热学,以及螺旋折流板、双斜内肋管、微肋管等新型换热设备。对于本科学生而言,对这些新概念、新现象、新设备的认识和理解有时是比较困难的,但与专业应用关联起来可以有效拓展学生的视野,助力创新性人才培养。

4.加强教师知识和能力

通过学习和研讨,让相关教师具备坚实的传热学、工程热力学、流体力学理论基础;具有专业全局观念,了解专业人才培养模式与规格要求,清楚专业课程体系及各门课程、各实践环节在人才培养方面的作用,掌握所承担的课程与其他课程或教学环节的衔接关系;具有丰富的工程实践经验,理解工程实践对人才能力的需求;了解学科前沿和发展动态,具有工程新技术研发能力。

三、课程教学方法改革

以突出学生主体性和专业学习的实用性为原则,在传热学授课过程中综合运用了启发式教学、案例教学等方法,旨在激发学生学习兴趣、提高教学效果。

1.启发式教学

改变传统专业基础课面面俱到的灌输式教学方法,转向适合学生认知过程的启发式教学方法。从基本概念到原理运用再到技术分析,层层递进,由教师引导学生一起去思考、分析和讨论问题,让学生在主动思考中掌握新知识,同时锻炼运用知识的能力。下面以传热学中“导热微分方程”一讲为例进行分析。

该讲包含大量的偏微分方程,内容抽象,教师在讲授时将重点放在分析导热微分方程及其各项的物理意义、推导的理论基础、如何简化与应用等方面。结合本专业典型的墙体导热过程,提出工程应用问题,即“如何计算在温差作用下由分子热运动产生的热量传递”;引出解决方法,即“物理模型―数学模型―求解”求解数学物理问题的一般方法和应用“能量守恒定律与傅里叶导热定律”的基本原理;阐述导热微分方程推导过程,剖析各项物理意义,例如“为热扩散项,表征的是单位时间内从x方向导入与导出微元体的净热量”;导热微分方程的应用,设定不同的墙体导热工程情景与学生讨论方程的简化条件,例如“导热系数是定值、无内热源、稳态”等等,启发学生建立导热微分方程的简化形式与高等数学中Poisson方程、Fourier方程、Laplace方程等的联系。

用这样一种启发式教学方法,使学生不仅理解了教材中理论性极强的推导过程,还能够使学生清楚为什么导热微分方程会有非稳态项、扩散项、源项以及什么时候可以省略,同时引导学生利用高等数学中的相关知识求解简单的导热微分方程。这样,教学过程不只是简单地教材重现,而是教材的导读与深化。教材是从抽象的概念和原理入门,再落实到实际应用;而教学要从实际问题出发,引出解决问题的方法,逐步掌握正确的概念和原理,进而形成普适性的抽象理念,二者的思路方向是相反的。

2.案例教学

传热学是一门与工程实践紧密联系的科学,有许多从生产实际中抽象简化出来的案例。案例教学可以从两个角度进行,一方面以案例为切入点,引出相关的概念、原理、技术等,可使教学内容更容易被学生接受,例如在“非稳态导热”一讲中可选择高温铁锭退火的案例;另一方面以根据实际案例分析讲解例题,展示给学生如何利用概念、原理、技术等解决实际问题,做到“授人以渔”。例如在“多层平壁导热”一讲中可选择外墙外保温系统传热系数计算及优化为案例。通过案例教学帮助学生举一反三、触类旁通,在有限的学时内达到较好的教学效果。

3.实践教学

实践教学是知识传授、创新能力培养的重要载体[4],也是传热学教学的重要组成部分。传热学中的实践教学主要体现在专业实验、课程设计、毕业设计三个环节。通过缜密的设计,建立三者之间的有机联系,减少部分验证实验和重复内容,适当增加创新性能力培养的相关内容,使学生尽快将专业知识应用与转化。安排必修实验教学8学时,其中基本型实验4学时、综合型实验4学时,开设选修创新型实验4个。供热工程、制冷技术、暖通空调、锅炉房工艺及设备等课程设计及毕业设计中涵盖了维护结构传热计算、各类换热器选型计算等。此外,鼓励学生参与专业教师的科研课题。通过产学研用的过程帮助学生完成感知、注意、记忆、理解、实践、创新的学习过程。

4.考核机制

课程的考核机制与课程理念是一致的,我们要考查的是学生对基本原理、概念和方法的掌握程度,而不是考查学生的计算能力。单一的闭卷考试模式已不适用,通过弹性的、多样的考核方式才能全面考查学生对概念的理解程度和分析问题的能力。笔者将传热学考核分为闭卷考试(60%)、实践环节(20%)、大作业(10%)和研究性学习(10%)四个部分。闭卷考试主要用于考查学生对课程的基本概念、基本理论和基本规律等基础知识的掌握程度,题目主要包括选择题、名词解释、简答题、计算题等,特别注意避免大段背书、背公式的情况。实践环节主要用于考查学生的动手能力、数据处理能力、团队协作能力等,通过专业实验操作及实验报告质量确定。大作业是案例教学的一部分,通过设计作业内容不仅训练学生对知识的运用熟练程度,还要训练学生的独立思考能力。研究性学习包括选修创新型实验、参与科研课题等形式,将其纳入到考核内容中来,可以调动学生学习积极性和主观能动性,为创新能力的培养提供平台。

5.双语教学

双语教学外语教学与学科内容相结合的体现,顺应高等教育国际化的需求。主讲教师国际化的教育背景为双语教学提供了条件。根据课程的内容、难易程度等因素,笔者选择了“绪论”、“太阳辐射”两讲开展了双语教学。学生对该教学方式比较认可,认为有利于理解专业术语、有利于国际交流和继续深造、学习有挑战性、课堂气氛活跃等,希望增加双语学习的机会。

四、结语

传热学是建筑环境与能源工程专业专业基础课的一枚基石,是学生解决工程实际问题的知识源泉。随着学科的不断发展、专业方向的不断调整,社会对专业人才需求的不断变化,类似传热学这样的专业基础课程的教学改革势在必行。只有在课程建设与教学方法改革的实践中不断摸索、研究和总结,才能使教学体系更科学、结构更合理,不断提高学生的基础知识储备水平,增强学生解决专业实践问题的能力,进而满足社会对人才培养质量的要求。

参考文献:

[1]高等学校建筑环境与设备工程学科专业指导委员会.高等学校建筑环境与能源应用工程本科指导性专业规范[M].北京:中国建筑工业出版社,2013:1-2.

[2]付祥钊,康侍民,卢军,等.培养建筑环境与设备工程通识型人才的探索[J].高等建筑教育,2008,17(6):30-34.

工程热物理论文范文7

也谈质量的概念张三慧,ZhangSanhui

重力场和正交均匀电磁场中的旋轮线(摆线)佘守宪,唐莹,SheShouxian,TangYing

一维量子力学典型模型的数值解研究汤正新,李元杰,TangZhengxin,LiYuanjie

由F=-V计算势能陈卫平,ChenWeiping

也谈用安培环路定理求无限长载流螺线管内外磁场的分布李建青,袁松柳,LiJianqing,YuanSongliu

液态电介质相对介电常数的测量物理与工程 刘保良,柯献辉,郜超军,LiuBaoliang,KeXianhui,GaoChaojun

测声速的一种新方法李叶芳,赖康生,潘洁,梁秀萍,LiYefang,LaiKangsheng,PanJie,LiangXiuping

水中倒影的计算机仿真实验研究胡守信,胡丹峰,HuShouxin,HuDanfeng

摩擦承重实验的设计及分析吴永熙,WuYongxi

纳米技术的广阔应用前景陈心中,徐润君,ChenXinzhong,XuRunjun

长周期扫描电路的设计与应用孙文斌,陆同兴,SunWenbin,LuTongxing

扫描隧道显微镜——20世纪重大科技成果之一杨庆余,YangQingyu

两线圈互感系数M12=M21的证法探讨欧阳芳平,张连明

非简谐周期振动合成的波赵强,孟志强

光的可逆性原理的一个应用张锡坤,朱俊

物理与工程 基础物理教学网站的构建与应用胡其图,张小灵

大学物理多媒体教学的实践与思考喻有理,王小力,张孝林

发光学的回顾与进展徐叙瑢,XuXurong

潮汐是怎样使地球自转速度变慢的张三慧,ZhangSanhui

工科力学要大力发展典型模型教学李元杰,王仁海,LiYuanjie,WangRenhai

费米-狄拉克分布和玻色-爱因斯坦分布的简单推导佘守宪,唐莹,SheShouxian,TangYing

相对论热力学的哈密顿函数张有生,ZhangYousheng

量子隧穿中的等效势垒宋金国,SongJinguo

关于并联谐振电路的讨论邝向军,KuangXiangjun

并联电感线圈的电流分配卢敏,LuMin

RC充、放电实验的再研究刘建科,杨卫平,LiuJianke,YangWeiping

补偿原理在测量技术中的应用周克省,ZhouKesheng

熵与绝热去磁制冷的物理原理刘爱红,LiuAihong

薄膜厚度测控技术中的物理原理许世军,XuShijun

磁聚焦问题中电子轨道的计算机模拟钱懿华,QianYihua

谈《大学物理网络教学系统》的可扩充性姚宏林,洪延姬,窦志国,王明东,罗靖

科技创新应有坚实的物理基础马宏达,MaHongda

中国21世纪初中期安全减灾六大战略问题的思考金磊

高考物理命题的理念及改革李勇

文科物理王泽良,刘海兰,唐宗岳

一道竞赛题解答的讨论陈栋梁

也谈理想气体的定义郭文立

《网络新技术系列丛书》(影印版)评介马瑛珺

场源基本微元的对称性与场的性质李复

密集波分复用(DWDM)、光学交叉互连(OXC)和全光通讯网络(AON)宋菲君,S.Jutamulia

是相速度还是群速度吕爱君

导体球壳上感应电荷及空间电场的分布(2)程克俊

理想气体压强公式的一种推导方法李建青,袁松柳HtTp://

应用质心运动定理一例赵强,李普选

任意四边形刚体平板绕质心轴的转动惯量公式周国全

物理实验常用仪器读数规则及其不确定度评定张俊玲

视频台上光学演示实验组合装置路峻岭,姚翔华,汪荣宝

微腔激光器的发展与应用物理与工程 韩艳玲,王宏

激光雷达在军事中的应用徐润君,陈心中

电感补偿放大器频率特性的深入探讨尹继武

压电效应及其在家电中的应用闫迎利

用半波带法讨论单缝夫琅和费衍射的课件演示与制作吴怡

工科大学物理课程教学的改革与实践高德文,金恩姬,赵英

哥白尼的《天体运行论》——近代物理学的号角田厚强,郭继华

熵与悲剧王泽良

组成论介绍(下):广泛的应用张学文

物理系统的稳定性与双稳现象(Ⅰ)佘守宪

超冷原子物理学与原子光学(续完)李师群

声速测定中“驻波共振”条件的讨论赵新闻

碰壁分子的平均速率和平均能量朱曙华,赵若云,沈抗存

判断热力过程吸热与放热的一种简便方法严子浚

干涉分波器上光程差的突变分析徐寿泉

外界分析法在开口热力学系统分析中的应用刘效洲,张文胜,苏新军,惠世恩,徐通模

关于惯量张量的注释黄宏炜

大学物理实验教学中的不确定度评定周克省,邓厚玲,肖光明

铁磁材料磁化曲线的智能观测系统朱茂华,谷彤昭,王波

气垫导轨实验的拓展崔益和

硅基红外探测器的研究进展杨红卫,吴实

热管技术及其在工程中的应用胡亚范

蒙特卡罗方法及应用尹增谦,管景峰,张晓宏,曹春梅

最大似然估计量的一致性与样本容量选择张小绵,赵志超,陈静秋,余陨金

关于大学物理网上测试模式的探讨王瑞敏

对一个静电平衡问题的分析梁建均

关于“热力学第二定律与熵”的教学探讨胡亚联

贝特与兰姆位移杨庆余

用电像法求电荷与导体间作用力时应注意的一个问题倪忠楚,NiZhongchu

基于半波带分析法的菲涅耳波带片衍射特性的讨论李平,LiPing

迈克耳孙干涉仪异常现象研究物理与工程 赵晓红,杨江萍,李丽娟,ZhaoXiaohong,YangJiangping,LiLijuan

论理想气体p-V图中负斜率直线过程张良瑞,刘运,ZhangLiangrui,LiuYun

关于理想气体的绝热过程方程朱曙华,唐建辉,沈抗存,ZhuShuhua,TangJianhui,ShenKangcun

微波实验在工科物理实验中的应用及意义徐少磊,孙文光,查建峰,何雨华,XuShaolei,SunWenguang,ZhaJianfen,HeYuhua

测定良导体导热系数实验的两个问题的分析景义林,JingYilin

半导体激光器温度控制的研究朱茂华,谷彤昭,钟福艳,ZhuMaohua,GuTongzhao,ZhongFuyan

利用激光技术对材料表面缺陷进行自动测量的研究物理与工程 刘灿,杨效杰,肖迪红,LiuCan,YangXiaojie,XiaoDihong

浅谈传感器刘永顺,牛文学,LiuYongshun,NiuWenxue

用计算机模拟驻波能量的变化卢艳,董慎行,LuYan,DongShenxing

喇曼:第一个摘取诺贝尔物理学奖桂冠的东方人程民治

理论与实验的整合--记一堂师生合作完成的教学示范课周雨青,叶兆宁,钱锋

折合转动惯量赵强,杨艳萍

工程热物理论文范文8

系里设立了应用化工专业和化工分析与检验专业(高职专科),专门培养高素质、高技能的化工操作人才,其中,应用化工专业是培养化工总控工的,就业岗位包括化工工艺操作、化工工程操作,化工设备操作、维护,化工仪表控制,化工DCS操作,化工安全管理,化工产品的包装与销售等。

专业的课程设置

由完成工作所需要的能力,确定以下学习领域:1、物理化学的知识体系一般公认的物理化学的研究内容大致可以概括为三个方面:化学体系的宏观平衡性质以热力学的三个基本定律为理论基础,研究宏观化学体系在气态、液态、固态、溶解态以及高分散状态的平衡物理化学性质及其规律性。在这一情况下,时间不是一个变量。属于这方面的内容有化学热力学,溶液、胶体和表面化学。化学体系的微观结构和性质以量子理论为理论基础,研究原子和分子的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性的规律性。属于这方面的内容有结构化学和量子化学。化学体系的动态性质研究由于化学或物理因素的扰动而引起体系中发生的化学变化过程的速率和变化机理。在这一情况下,时间是重要的变量。属于这方面的内容有化学动力学、催化、光化学和电化学。物理化学的主要理论支柱是热力学、统计力学和量子力学三大部分。热力学和量子力学分别适用于宏观和微观系统,统计力学则为二者的桥梁。原则上用统计力学方法能通过个另分子、原子的微观数据来推断或计算物质的宏观现象。物理化学由化学热力学、化学动力学和结构化学三大部分组成。2、应用化工专业所需内容的选择对照操作岗位的知识和能力需要,本着实用、够用,适当拓展的原则,选取化学热力学、化学动力学两大部分,主要内容有物质PVT性质、热力学第一定律、热力学第二定律、热力学在多组分体系和相平衡体系中的应用、化学平衡、化学动力学基础、胶体、粗分散系和表面化学。根据课程内容及深度,决定选用高职高专化学教材编写组编写的《物理化学》(第三版,化学工业出版社)为基本教材,以傅献彩主编《物理化学》(第五版,高等教育出版社)为主要参考资料。3、物理化学课程定位学习物理化学需要大学物理、高等数学、基础化学的基础知识,同时,物理化学又为学习化工设备基础、化工热力学、化学反应工程、煤化工工艺学等课程打下基础。因此,《物理化学》课程是应用化工专业的重要专业课,是其他主要专业课的基础。

基于工作过程的教学方法

确定了内容,就需要对知识按照工艺岗位的实际情况,进行解构和重构,即以工作过程为载体,以工作任务为情境,构建认知系统。通过综合分析周边化工企业生产工艺,归纳典型岗位,决定选取新能凤凰甲醇的生产工艺为载体,对物理化学内容进行重构。新能凤凰甲醇的生产采用的是德士古技术工艺,主要工段有空气分离制取液氧,制取水煤浆,水煤浆燃烧气化,甲醇合成与精制,各工段对应的知识如下表:(表略)通过完成任务,提高了学生掌握知识的目的性;在学生自主决策与计划中,激发其主观能动性,掌握解决问题的方法与步骤;通过任务实施,培养其动手实践能力;通过教师的检查与评价,让学生体验成功的愉悦,激发其学习的兴趣,提高学习效率和效果。

工程热物理论文范文9

[关键词]地埋管换热器;传热模型;影响因素

中图分类号:TU995 文献标识号:A 文章编号:2306-1499(2014)08-0188-02

进入新世纪以来,地源热泵得到持续迅速发展,其主要有节能环保、高效稳定的特点。而地源热泵技术的主要的核心应用基础技术是地埋管换热器。地埋管换热器的传热性能主要为一种非常繁琐但是又非稳态的热传递过程。主要是换热器的埋管方式以及埋管的土壤特性都对换热器热传递过程有重要影响;而地下水、回填的主要材料和地表气象也对其有影响。此外,热泵机组具有的运行特性也与地埋管的热传递过程有相互影响作用。

因为地埋管换热器的几何形状为竖直U形,加之其自身的管内流体以及土壤具有的耦合传热综合起来的复杂性,通过建立模型并使其可以精确模拟地埋管换热器具有的全部实际情况并对其求解,在现有计算的技术条件下几乎没有实现的可能,而且也没有必要,所以各部分模拟数值都必须作出必要的简化。但是,通过文献检索的情况分析,很少有通过简化对地埋管换热器管模拟其内流场以及其管外温度场的计算以及对该计算具有的误差的基本分析。其热传递过程通过数学完全描述为地埋管换热器的基础热传递研究。目前的技术条件下,地埋管换热器通过实际测量数据再模拟数据为其主要研究方法。但是各个地区本身的水文地质特点有非常大的差别,有时通过某一地区测量的数据不能用于其它水文地质情况与该地区不同地区设计其它埋管换热器;而且在模拟数据时,有时为了简化计算以及节约时间,也会将模型大大简化,造成在实际工程中很难应用。

1. 地埋管换热器的传热模型

目前,地埋管换热器的主要研究方法包括线热源论、圆柱热源论以及能量平衡论等三种理论方法。1950时,由Ingersoll和Plass共同研究出了一种基于Kelvin 的线热源数学模型,该模型主要为把埋于地下U 型地埋管简化成了一种无限长度线热源模型,将其设为热传递轴心,将热辐射给四面八方无穷尽的介质中,对地埋管周围主要的土壤的温度的分布情况进行了粗略的描述。目前,大部分地源热泵的核心设计都以上述理论为基础。该模型的建立主要适用的地源热泵系统为管径较小且运行时间要长。

上世纪六十年代左右,圆柱热源论由Carslaw 和Jaeger首次提出。定壁温和定热流也为该理论包括的边界模型。实际上,此类模型通过线热源论改进以后的模型,与之相异的是该模型对地埋管内主要流体特性以及流动特性进行了考虑,主要通过柱面放置热源柱,所以,此类模型通常比较适用地源热泵系统为管径较大且运行时间较短的系统。其主要控制方程为:

对圆柱热源论的应用,首先要将地埋U型管等效的比拟成一个直管,早在1983年,Claesson 与Duand就共同提出了等效管的想法。这种想法的核心部分是要对等效管的直径进行确定。1990年后,地埋管的圆柱热源论有了更进一步的发展,主要考虑U 型管的二维数学模型的综合影响因素,主要有其几何形状、回填的主要材料、管内壁、土壤冻结以及水分的迁移性等。以上模型的求解主要通过数值法,其模拟出的结果对系统运行后反映其开启时间不长的情况。

2.影响因素

2.1土壤热物性

地埋管换热器设计最关键的因素土壤的热物性能,其主要参数为导热系数、热能扩散率以及土壤体积比热容等。所以,设计地埋管换热器首先需考虑如何能够准确地反映岩土热响应的能力以及土壤热物性的主要参数进行测量。通过查询文献,假如土壤自身导热系数的误差大于10%就会使设计结果有不少于5%的误差。在实际进行的工程中,要使土壤热物性能不变,最重要的是对岩土热物性进行准确的测量。目前,岩土的热物性有很多方法可以现场测量,它们对设计地埋管提供了可靠的依据。

2.2回填的主要材料

关于主要回填材料的研究,分为主要回填材料中所使用水泥的种类,使用砂子的种类、粒径以及含水率和含有膨润土的量。以上因素都为实际工程中的应用提供了必要的理论依据以及指导意义。但是,目前关于回填材料的主要研究并没有得出以上各种因素对回填材料热传导系数综合影响的主要规律。所以,回填材料中的各个组分的最优配比很难控制,目前只能对各个组分在回填材料热传导系数中所占影响大小和最大限度的增大回填材料自身的热传导系数进行考虑。但是主要回填的材料不宜有过大的热传导系数,比周围土壤的热传导系数略高或与基本相等为最佳。同时要考虑地源热泵换热器的主要回填材料还必须根据各种各样的土壤结构以及对不同的填料热传导性的研究选用不同的填料。所以,需要更加努力的研究高性能回填材料。

2.3地下水流动

现如今关于设计地埋管的理论很多都忽略了土壤本身具有的热湿传递性。但是,土壤本身是具有多孔的介质,在它的间隙中会有流动的地下水。所以,地埋管在土壤中的热传递的本质是传热传湿的过程。

为了研究竖直埋管换热器受土壤中的地下水渗流的影响,通过建立多孔介质在发生渗流时的换热能量方程,通过格林函数求得了多孔介质中移动热源产生的温度场:

通过以上公式明确地揭示了此类传热过程中,各种影响的因素具有的定性和定量的逻辑关系,但是这也只能应用于单孔地埋管换热器,不可直接用在地埋管群换热器上。

3. 结论

基于热湿耦合具有的复杂性,建立其主要数学模型时仅对其多孔介质的土壤具有的导热系数的变化率进行考虑, 而不必考虑土壤中流动水分的迁移性。目前阶段,模拟地源热泵系统的研究已经有了比较成熟的技术。现有技术的传热模型,大部分都可以将U 型管的地下换热器和土壤中的主要传热情况进行模拟。而且目前在圆柱热源以及线热源论基础下的方法搭建的传热模型,没有办法比较精确地对短时间内负荷的波动所引起温度的变化进行求解。所以,就无法模拟出地源热泵系统在最初始状态下的运行状况;在能量平衡论的方法下热传递模型基本上都没有可能直接耦合求解U 型管内部具有的对流换热管和周围介质具有的热传导,所以无法精确求解换热器传热的精确状态,且模型多为二维,不能反映沿管内流体温度变化,而且某些准三维传热模型,也只可以反映出系统在稳定运行状态下的所具有的情况。以上这些理论都为地埋管换热器以后需建立更精确的模型提供了更多可以参照的依据。

参考文献

[1]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.