HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

物理力学论文

时间:2022-04-18 08:47:39

摘要:教师应当注重对于学生的引导与启发,要透过启发式教学来深化学生对于相关知识点的认知.此外,教师在课堂上要注重力学演示实验的呈现,这将会为知识教学提供辅助.力学知识是物理学的基础所在,夯实学生的力学基础,能够为今后的知识教学提供有力铺垫.

关键词: 物理 力学

物理力学论文

物理力学论文:物理力学知识有效教学论文

一、做好教学导入

初中物理力学主要包括了力、密度与浮力、压强等知识.教师在组织学生学习每一个知识点的过程中应当与现实生活的现象联系起来,这往往更容易被学生理解与掌握.同时,教师可以在课堂上穿插一些经典的小故事或者教学案例来活跃课堂氛围,促进学生对于知识的理解与掌握.例如,在讲“浮力”时,教师可以先给学生讲一下阿基米德在洗澡的时候想到了如何在不损坏国王王冠的情况下检测出王冠是不是纯金的.教师在讲这个故事时,可以让学生先猜想阿基米德是用的什么方法,再在课堂上讲解浮力的知识,将其中的原理在知识中呈现.这不仅能够为学生的独立思考提供一定的空间,学生在经历了积极的思考后也会更容易明白阿基米德是怎么做到的.在力学知识的教学中教学导入是一个十分关键的环节,良好的教学导入,能够为知识教学提供好的氛围,并且深化学生对于知识点的领会.

二、注重启发式教学

在力学知识的学习中,知识应用非常重要,教师要注重对于学生的引导与启发,让学生的思维更为活跃,对于一些知识的理解能够更加透彻.有的教师在课堂上采用的教学模式十分陈旧,往往只是单一地引出知识,然后和学生就相关问题展开剖析,学生的参与非常局限,学生对于知识点的学习兴趣也不高.这些都是课堂教学中应当有所改善的地方,教师要透过启发式教学活跃学生的思维,增进学生对于相关知识点的掌握.例如,在讲“压强”时,教师可以先提出问题让学生思考:我们在雪地中行走的时候很容易陷入雪中,但是很宽的滑雪板在雪地上为什么可以自由滑行而不会陷进雪中呢?还有,我们可以实验一下,用自己的大拇指和中指夹住圆珠笔的两端,细细感受一下,两个手指的感受其实是不相同的,这是为什么呢?这两个问题,学生从各个方面进行分析和猜想,就会考虑到受力面积,从而将课堂教学的重心引入压强的学习中.这种透过问题情境的创设来引发学生的思考是物理教学中很值得采用的一种教学方式.这不仅能够凸显学生的教学主体性地位,也能够活跃学生的思维,促进学生对于知识的理解与掌握.

三、重视力学演示实验

在力学知识的学习中,实验教学是重要的组成部分,教师要注重演示实验的呈现,这将会为知识教学提供辅助.力学知识如果单纯地以口头讲述的形式进行阐述,学生不仅在理解上十分浅显,对于重点的领会也会较为缺乏.实验教学能够弥补这种缺陷.透过实验过程,不仅能够直观地将一些物理学现象呈现给学生,对于知识的应用,也有促进作用.例如,在讲“浮力”时,教师可以设计这一个实验:把一块橡皮泥丢入水中,让学生自己动手实验:怎样才能让橡皮不下沉.学生都会积极地思考和动手,有些学生会把橡皮泥放在木板上,有的学生会把橡皮泥捏成片状或者豌豆状让它不下沉.学生在动手的时候,其实就是把浮力的相关知识进行了运用,达到了培养学生创新思维的效果.此外,对于一些不方便在课堂上进行的实验,教师可以借助多媒体工具来实现实验的演示.例如,在讲“大气压强”时,需要做一个托里拆利实验,其中需要运用到水银,但是水银是有毒的,无法在课堂上进行实验,教师可以运用多媒体,展示整个实验的过程,让学生明白大气压强的值是如何得到的.力学部分知识的实验教学,不仅是力学知识教学的重要组成,也能够深化学生对于很多核心知识点的理解与认知,能够提升课堂教学效率.

四、结语

总之,想要深化初中物理力学知识的教学,教师要从教学导入着手,要借助多样化的导入形式来激发学生的学习兴趣.同时,教师应当注重对于学生的引导与启发,要透过启发式教学来深化学生对于相关知识点的认知.此外,教师在课堂上要注重力学演示实验的呈现,这将会为知识教学提供辅助.力学知识是物理学的基础所在,夯实学生的力学基础,能够为今后的知识教学提供有力铺垫.

作者:季学余 单位:江苏盐城市泽夫初级中学

物理力学论文:复合水泥物理力学性能论文

1试验

1.1原材料

熟料:采用华新水泥厂的新型干法熟料(石膏外掺),其物理力学性能见表1;硬石膏:其化学成分见表2;脱硫渣:采用武钢的干法烟气脱硫渣,其化学成分见表3;粉煤灰:采用青山热电厂的二级粉煤灰;矿粉:取自武钢粉磨厂,其SO3含量为0.35%;标准砂:采用的标准砂是厦门ISO标准砂。

1.2方法

水泥标准稠度用水量、凝结时间和安定性检验按照GB/T1346—2001《水泥标准稠度用水量、凝结时间、安定性检验方法》[6]进行。水泥胶砂流动度按照GB/T2419—1999《水泥胶砂流动度测定方法》[7]进行。水泥胶砂强度按照GB/T1767l—1999《水泥胶砂强度检验方法》[8]进行。水泥胶砂干缩试验按照JC/T603—2004《水泥胶砂干缩试验方法》[9]进行。

1.3试验配合比

试验中控制熟料掺量为35%,矿粉掺量为30%,通过调节脱硫渣和硬石膏掺量,探讨了脱硫渣及硬石膏掺量的变化对复合水泥性能的影响规律。其中,在脱硫渣和硬石膏复掺试验中,脱硫渣与硬石膏中所含SO3比例为1∶1。

2结果与讨论

2.1硬石膏(未掺脱硫渣)对水泥性能的影响

从A-1到A-3的试验结果中可以看出:随着石膏掺量的增加,水泥标准稠度用水量逐渐增大;水泥的凝结时间有所延长,SO3含量的变化从3.0%~4.0%,水泥初凝时间增加近60min,终凝时间增加近30min;此外,每组水泥的初凝和终凝时间相差60min左右。作出水泥各龄期力学强度随石膏掺量变化趋势图,见图1。从图1中可知,该组水泥试样的3d和28d的抗折强度均随着硬石膏掺量的增加而逐渐增大,其抗压强度与抗折强度有着相同的规律。

2.2脱硫渣(未掺硬石膏)对水泥性能的影响

从B-1到B-3的试验结果中可以看出:随着脱硫渣掺量的增加,水泥的标准稠度用水量呈逐渐增大的趋势,水泥凝结时间也逐渐延长,同样,SO3含量的变化从3.0%~4.0%,水泥的初凝及终凝时间均增加近150min;此外,每组水泥的初凝和终凝时间差达到180min左右。与A-1到A-3的试验结果对比发现,SO3含量相同两组试验,掺脱硫渣的水泥试样的标准稠度用水量、初凝及终凝时间均要大于掺硬石膏的水泥试样,并且随着SO3含量的增加,水泥凝结时间延长的幅度也随之加大。当SO3含量都为3.0%时,两者初凝相差10min,终凝相差131min;SO3含量都为3.5%时,两者初凝相差25min,终凝相差137min;SO3含量都为4.0%时,两者初凝相差103min,终凝相差241min。由此可见,脱硫渣能够明显延缓水泥的凝结时间,并且其缓凝效果要强于硬石膏。脱硫渣对水泥的缓凝作用,增大了水泥初凝和终凝的时间间隔,并且合理掺量的脱硫渣对水泥的缓凝效果能满足相应规范对水泥凝结时间的要求。作出水泥各龄期力学强度随脱硫渣掺量变化趋势图,见图2。从图2中可知,该组水泥试样3d抗折、抗压强度随着脱硫渣掺量的增加先降低后增大,而28d抗折、抗压强度则逐渐增大,并且28d强度值比较接近,脱硫渣掺量从9.2%增加到13.7%,28d抗压强度提高了6.01%。但与A-1到A-3的试验结果对比可发现,相同SO3含量的两组试验,掺有脱硫渣的水泥试样的3d抗折、抗压强度均低于掺硬石膏的水泥试样。与A-1试样相比,B-1试样的3d抗折、抗压强度分别降低11.1%和10.9%;与A-2试样相比,B-2试样的3d抗折、抗压强度分别降低34.1%和40.2%;与A-3试样相比,B-3试样的3d抗折、抗压强度分别降低38.6%和43.2%;然而掺有脱硫渣的水泥试样28d抗压强度值却偏高,与A-1试样相比,B-1试样的28d抗压强度提高了36.2%;与A-2试样相比,B-2试样的28d抗压强度提高了32.8%;与A-3试样相比,B-3试样的28d抗压强度提高了18.6%。由此可见,与硬石膏相比,脱硫渣的掺入对水泥早期强度的发展不利,且随着脱硫渣掺量的增加,3d强度降幅增大;但脱硫渣有利于水泥后期抗压强度的增长。

2.3脱硫渣和硬石膏复掺对水泥性能的影响

从C-1到C-3的实验结果中可以看出:随着SO3含量的增加,水泥试样的标准稠度用水量逐渐增大,但水泥凝结时间相近,变化不明显,水泥初凝时间将近10h,终凝时间到达12h左右,水泥凝结时间明显偏长。由此说明脱硫渣与石膏复掺时会出现更强的缓凝效果,水泥凝结时间大幅延长。作出水泥各龄期力学强度随SO3含量变化趋势图,见图3。从图3中可知,该组水泥试样3d抗折、抗压强度随着SO3含量的增加先降低后增大,28d抗折强度逐渐增大,28d抗压强度却逐渐降低。但是,在相同SO3含量的情况下,与A组实验进行比较发现,其变化规律与B组和A组比较结果的变化规律相似,即C组水泥试样3d强度低于A组试样,但28d抗压强度仍然高于A组试样;与A-1试样相比,C-1试样的28d抗压强度提高了45.2%;与A-2试样相比,C-2试样的28d抗压强度提高了36.2%与A-3试样相比,C-3试样的28d抗压强度提高了13.2%。通过上述分析可知,脱硫渣和硬石膏进行复掺,使复合水泥的凝结时间大幅延长,其凝结时间已经不能满足复合水泥对凝结时间的要求,但其对水泥强度的影响规律和单掺脱硫渣的水泥类似。因此,两者复掺主要对水泥的凝结时间影响较大,可能是由于两者掺配比例不合理的原因。

2.4脱硫渣对水泥干缩性能的影响

为了研究脱硫渣对水泥干缩性能的影响,本次试验中选取A-1、B-1、B-2及B-3四组配比,测定了水泥砂浆的不同龄期的干缩率,试验结果见图4。从图4中可以看出,4组水泥试样的干缩率均随着龄期的增加而增大,在养护的初期阶段,水泥干缩率的增长速率较快,养护14d后,水泥干缩率的增长速率降低;比较A-1和B-1可知,在相同SO3含量的情况下,掺有脱硫渣的水泥试样在各龄期的干缩率均低于掺硬石膏的水泥试样;从B-1到B-3可看出,水泥试样各龄期的干缩率随着脱硫渣掺量的增加而降低。由此可见,脱硫渣的掺入能明显改善水泥的干缩性能,且随着脱硫渣掺量的增加,改善效果越好。

2.5脱硫渣对水泥缓凝及补偿收缩效应机理分析

脱硫渣中Ca(OH)2的含量较高,这使水泥在水化初始即形成Ca(OH)2的高度过饱和液相,对钙矾石生成影响最大的Ca2+、OH-浓度与普通水泥相比要大的多,在水化初始形成钙矾石的诸离子的溶度积K即超过了形成钙矾石所需的临界值Ksp,钙矾石的析晶速率更快,晶体尺寸更小,生成更具有屏蔽作用的胶体状钙矾石覆盖在水泥颗粒表面,延缓了水泥特别是C3A的水化[10]。而CaSO3·1/2H2O与C3A体系在纯水中水化30min时即可生成胶体状的C3A·CaSO3·11H2O覆盖在C3A的表面,也可能造成C3A在开始之初水化延缓。由于脱硫渣中同时含有硫酸钙和亚硫酸钙这两种物质,可能由于两者的双重作用效果,使得脱硫渣的缓凝效果要强于硬石膏。袁润章等人研究了矿渣在不同介质下呈现出水硬活性的能力,矿渣通常只有在pH值大于12的碱性环境下才能呈现出一定的胶凝能力,同时CaSO4和Ca(OH)2共同作用下对矿渣的激发效果比Ca(OH)2单独激发的效果更加显著[11]。脱硫渣中含有大量的Ca(OH)2、CaSO4等活性激发组分,在大幅度提高水泥水化液相碱含量的同时,不仅可以促进矿渣和粉煤灰活性更早地被激发,还能大大提高矿渣和粉煤灰的二次水化反应程度,进而提高水泥后期强度增长率[12]。通过掺入脱硫渣能促进水泥水化过程中钙矾石晶体的生成,通过钙矾石的吸水肿胀和结晶膨胀作用来达到微膨胀的作用,显著改善水泥的收缩和抗裂性能。

3结论

a.脱硫渣与硬石膏相比,比表面积较大,需水量多。b.脱硫渣对复合水泥的缓凝效果要好于硬石膏,其缓凝时间能满足复合水泥对凝结时间的要求,脱硫渣能够取代硬石膏用做水泥缓凝剂。但将两者复掺时,复合水泥的凝结时间却大幅延长,其缓凝时间不能满足复合水泥对凝结时间的要求,两者复掺比列还需进一步研究。c.脱硫渣对复合水泥早期强度影响不利,却能提高水泥后期强度的增长率;在SO3含量相同时,B组水泥试样(脱硫渣掺量9.2%~13.7%)与A组相比,3d抗压强度下降10.9%~43.2%,而28d抗压强度提高了18.6%~36.2%。d.在合理掺量范围内,脱硫渣的掺入能明显改善复合水泥的干缩性能,且随着脱硫渣掺量的增加,改善效果越好。

作者:拓守俭 单位:武汉理工大学

物理力学论文:物理力学题受力分析解题方式论文

摘要:整体法和隔离法是力学部分常用的分析方法。可以先隔离再整体,也可以先整体再部分隔离。这就是整体法与隔离法的综合应用。整体法与隔离法的综合应用时,系统的运动情况通常分为以下三种类型:第一,系统处于平衡状态;第二,系统处于不平衡状态且无相对运动;第三,系统内部分平衡部分不平衡。

关键词:整体法;隔离法;力学

在力学中,解决力学问题时,往往遇到这样一类情况:题中被研究的对象不是单一的一个物体,而是互相关联的几个物体组成一个系统。解这一类问题,一般采用隔离法:即把各个物体隔离开来,分别作受力分析,再根据各自的受力情况和运动情况,应用牛顿运动定律和运动学公式,列式求解。但在这类问题中,往往单用隔离法很难求得结果,解决过程也十分繁复,甚至用隔离法解简直无从着手。这时,我们不妨试用整体法:即把整个系统当作一个整体作为研究对象进行受力分析,再列式求解。这样做,往往能使原来很难求解的问题简单化,无从着手的问题也迎刃而解。

整体法是从局部到全局的思维过程,是系统论中的整体原理在力学中的应用。它的优点是:通过整体法分析物理问题,可以弄清系统的整体受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。通常在分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)时,用整体法。

隔离法就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。它的优点是:容易看清单个物体的受力情况,问题处理起来比较方便、简单,便于理解。在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。

整体法和隔离法是力学部分常用的解题方法。可以先隔离再整体,也可以先整体再隔离。这就是整体法与隔离法的综合应用。整体法与隔离法的综合应用时系统的运动情况通常分为以下三种类型:

一、系统处于平衡状态

整体都处于静止状态或一起匀速运动时,或者系统内一部分处于静止状态,另一部分匀速运动。以上这些情况,整体都平衡,整体内每个物体所受合力为零,整体所受合力也为零。这样,根据整体的平衡条件,就可以确定整体或某一个物体的受力特点。

二、系统处于不平衡状态且无相对运动

由于系统内物体间没有相对运动,即整体内每个物体都具有相同的速度和加速度,这时整体所受的合力提供整体运动的加速度。这种情况利用整体法,更容易把握整体的受力情况和整体的运动特点。

三、系统内部分平衡部分不平衡

这种情况由于系统内物体的运动状态不同,物体间有相对运动,通常习惯用隔离法。若系统内两个物体一个处于平衡,另一个处于不平衡状态时,也可以利用整体法来分析,有时会使问题简化易于理解。当然,这种情况整体所受合力不为零,整体所受合力就等于不平衡物体所受的合力,用来提供不平衡物体的加速度。

物理力学论文:利用物理图象形象解答物理力学问题研究论文

摘要:本文从物理图像的含义出发,以位移—时间(x-t)图象和速度—时间(v-t)图象的应用为例,阐述了正确把握物理图象的涵义在提高解决物理问题的能力、培养科学的思维方法方面的积极作用。

关键词:物理;图象;力学

在对物理规律与现象进行描述时,为了更加直观,我们经常借助于函数图象,用纵坐标和横坐标分别对应不同的物理量,这就形成了物理图象,在中学物理课程的力学部分,涉及到许多的物理图象,其中以位移—时间(x-t)图象和速度—时间(v-t)图象的应用最为广泛。正确把握这些图象的涵义,有利于提高对物理问题的解决能力,培养科学的思维方法。下面笔者以一些图象为例,对其进行剖析与应用。

一、图象中直线的斜率的物理涵义

为一物体做直线运动的位移—时间(x-t)图象,图象为一直线,说明运动过程中,物体在相同的时间内发生的位移相等,做的是匀速直线运动,直线的斜率应表示位移与发生这些位移所用时间的比值,即速度。

为一物体做直线运动的速度—时间(x-t)图象,图象为一直线,说明运动过程中,物体在相同的时间内速度的改变量相等,物体做匀变速直线运动,直线的斜率应表示速度变化量与发生这些变化所用时间的比值,即加速度。可以看出,对应直线图象中直线的斜率的物理量应该是纵坐标物理量与横坐标物理量的比值。

二、图象中曲线上某点的切线的斜率的物理涵义

曲线上某点的切线的斜率是所对应物理量的瞬时值。切线的斜率分别表示物体在对应时刻的瞬时速度和瞬时加速度。

例3:为某质点做简谐运动的x-t图象,请根据该图象指出质点速度的大小及其变化情况。

解析:由图象可以看出,在平衡位置,位移最小,但斜率最大,因此速度最大,在最大位移处,位移最大,但斜率最小(为0),因此速度最小(为0)。当物体由平衡位置向最大位移处运动时,斜率变小,速度变小,当物体由最大位移处向平衡位置运动时,斜率变大,速度变大。

三、图象和坐标轴之间所夹的对应面积的物理涵义

图象和坐标轴之间所夹的对应的面积,应该是横坐标所代表物理量与纵坐标所代表物理量的乘积。在速度-时间(v-t)图象中,图象与时间轴所夹的对应时刻t1、t2之间的阴影部分面积,表示t1到t2时间内物体发生的位移。

物理力学论文: 学生物理能力学习方法分析论文

一、高中物理学习现状

(一)日常生活中观察的现象与学习的物理知识相违背

学生的观察能力由于受主观条件的限制,都会对大自然的认识过程中出现片面甚至是错误的认识,如“力是改变物体运动的原因”、“加速度大,速度就大”、“摩擦力总是阻碍物体运动”、“受静摩擦力的物体一定处于静止状态”、“子弹打木块机械能守恒”、“质量不相同的两个物体从同一高度落下,质量大的先着地”等产生错误认识……

(二)不能对物理过程进行全面、合理的分析

学历物理规律后必须能对具体的问题进行正确何苦的分析。必须是自己的脑子中有非常清晰的“物理模型”,才能在实际解题中不出差错。

(三)数学知识的滞后性

解决物理问题是需要一定数学基础做为后盾的,否则导致物理问题地解决束手无策。

(四)不正确地学习办法对解题的影响

简单而言,不正确的学习方法有以下几种情况:

1.死记硬背;2.物理问题数学化;3.思维定势影响解题;4.思维不能正确迁移。

(五)相关学科学习水平对解题的影响

1.语文基础不好,导致学生不能正确审题,读不出关键内容从而造成审题错误。

2.数学学习水平对物理学科的影响。

(六)思维不严密

1.审题不周造成漏界解;2.研究物理状态不清;3.分析物理过程不全;4.正负号运用不当。

物理教学大纲要求:物理教学既要重视教学,更要重视能力的培养,能力包括学生观察能力、思维能力、分析和解决问题的能力,而各种能力的核心是培养学生的思维能力。教师确立学生在教学中的主导地位,使学生积极主动学习,积极参与教学过程,使学生养成良好习惯,在获得和运用知识过程中培养能力。

二、高中物理学习对策

物理内容包括知识和能力两个方面,重点是能力,即运用物理概念、规律来分析、解决问题。所以,物理学习的核心是全面、深入、准确地理解物理概念、规律、方法。

(一)通过解题培养能力——解题能力,具体目标就是培养物理思维品质

1.在解题训练中,培养思维的广阔性和深刻性,可以通过一题多解、一题多变、一题多问等方式进行,使学生多角度、全方位地抓住问题的本质、加强分析问题和解决问题的深广度。

2.物理现象自身是有序的,人类认识物理现象的办法和过程应该是有序的,因此必须培养学生分析问题的有序思维能力。

3.培养思维的创造性,既培养创造能力

在解决物理习题中,有的可用基本方法解(如定义法、公式法),这类习题思路明显,解题方法直接,而有些戏提条件特殊,新颖有趣,提问离奇,若用基础方法很麻烦,甚至陷入绝境,需要充分挖掘条件,灵活联想变换,才能找到最佳会富有创造性的解法,因此培养学生的创造能力,既是解题关键又符合新时代的要求——培养和创造性人才

4.培养思维的精确性和有效性

物理选择题,题干及若干个选项创设了特定的物理情境,不一定学生精确至每个选项的细节,只是根据题意,把信息加以传递,提取有价值的信息,论证与筛选同步进行,以求局部的深刻性,整体认识,用极端思维等培养思维的有效性,而在计算题中需要仔细分析物理过程,合理推断。

5.掌握一些特殊的办法。

严密的分析,这需要培养思维的深刻性。转(二)全面、深刻、准确地理解物理概念、物理规律

1.要在更广泛的知识和更普遍的背景材料上把握物理概念、物理规律。理解和掌握物理概念、物理规律就需要对概念、规律的提出、建立有一定的了解,对概念、规律内容的各种表达形式(文字和数字)有清楚的认识,能理解它们的确切含义,理解它们的胜利条件和适用范围,理解他们在物理理论大厦中的位置,会应用它们分析解决问题。在复习前考生对此已经有一定的认识、理解,但那是应该知道,基本物理概念、物理规律揭露了客观事物的本质,是人类经过长期曲折的历史过程的结晶,具有深刻的、丰富的意义,对它们的实质和意义的理解是分层次,在高中一、二年级学习四的理解是低层次的,在复习过程中要努力提高一个层次。

2.概念规律紧密联系。应该知道,物理概念、物理规律揭露物理现象的本质,物理规律建立了有关物理量间的联系,它们之间是紧密联系的。如果把它们隔离开来、脱离物理规律、死背概念定义和脱离概念、形式上对待规律内容,是不可能很好理解和掌握物理概念、规律的。我们应该主要通过规律来理解概念,通过概念来掌握规律。

3.比较易混的物理概念、规律。比较容易混搅的物理概念、规律的异同、区别和联系有利于准确理解概念、规律的准确含义。

4.灵活应用物理概念、规律。只有通过实践、通过应用才能检查出我们对物理概念、规律是否真正理解,哪些内容理解了,哪些内容还没有理解。解题是物理概念、规律的一种应用。我们根据概念、规律对题意进行具体分析、确定研究对象,分析对象说出的物理状态和发生的物理过程,弄清楚题目的物理情景、现象产生的原因、条件,然后确定具体的物理量,建立解题方程、关系,求出最后答案,必要时要进行讨论。根据物理规律的内容、特点,我们得出应用规律的一些基本步骤,但我们不应该是套基本步骤,而应该理解基本步骤来源于物理规律本身,对具体内容具体分析并灵活应用。那种把物理题形式分成许多“类型”,对某一“类型”的题目套用“解题步骤”的做法,不能很好培养自己独立地、灵活分析解决问题的能力。例如,牛顿定律F=ma是对质点的某一时刻说的,根据定律和有关力、质量、加速度的概念应理解,应用牛顿定律首先要明确研究对象是哪一物体或一组物体,他们要看成是一个质点。研究的质点明确了,质量m才能定下来,加速度a和受力F才能够分析明确。质点的受力分析和加速分析除了根据力是物体间相互作用、重理、弹力、摩擦力、电场力、安培力、洛仑磁力公尺和加速度定义、运动学公式外,在许多问题中海需要把力和加速度结合起来分析,应灵活运用;动力学有5个重要规律:牛顿定律:动量定理:动能定理:机械能守恒定律。这些规律在研究对象、内容、是和条件、受力分析等方面各有特点。对以具体的力学问题研究应该选用哪个或那几个规律求解要根据规律特点和提议的具体分析确定。

总之,物理学习在勤奋的基础上,要不断总结,加以信息整理、思考、拓展、延伸,不断提升,才能培养思维能力。只有真正掌握概念、规律,才能正确理解物理知识。理解和应用两者有机结合,才能学好物理。

物理力学论文:中学物理力学教学法讨论分析论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:中学物理力学教学法研究论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理重视力学解题管理论文

在多年的物理教学中,我对力学解题做了一些探究:在重视力学概念、规律教学的同时,把重点放在力学解题的思维过程上,增强学生力学解题思维的自我调控意识。我把学生解题过程看作是“获取信息、思维启动、思维逻辑、思维深化”的过程。在指导学生解题上,抓了“明确对象、弄清概念、运用规律、设疑点拨”四个方面。

一、认真审题、明确对象、联想图景、启动思维。

力学习题有的给出一个物体,有的给出两个或多个相关联的物体。从物理过程看,有的给出部分,有的给出全部。认真审题就是要实现几个转换:1.由个别向一般转换。

所有的力学解题开始应对研究对象进行受力分析,代入运算时统一用力学的国际单位制(SI制),解题结束应对结果的合理性作出判断。

2.研究对象的实体向物理图景转换。

宏观物体(大到天体);有做匀速运动的,也有做变速运动的;有个体,也否相关联的群体。对题目给定的研究对象进行抽象思维,形成一定条件下的清晰的物理图景。有趣的物理图景促进学生的注意转移,情感与图景贴近,达到情景结合,有助于学生思维的正常启动。

3.物理过程向物体的状态转化。在力学范畴内物体的运动状态有平衡状态(静止、匀速直线运动、匀速转动)和非平衡状态。物体处于何种状态由所受的合力和合力矩决定。学生对物理过程和物体所处状态的了解,减少了解题的盲目性。

4.已知条件向解题目标转换。力学解题目标一般包括:画出研究对象的示意图。在图上进行受力分析(不能遗漏所受到的每一个力,也不能凭空增加力),物体在各个时刻的状态、位置、运用的物理规律、公式、要求的物理量等。

5.文字叙述向示意图形转换。在根据题意画出的图上标明受力情况(按重力、弹力、摩擦力顺序思考)。某一时刻或某一位置的运动状态,也用符号标出。学生通过画图对物理图景有了直观了解,触景生情,增强了解题的信心。

二、弄清概念,策略认知,分配注意,发散思维。

物理概念是物理知识的重要组成部分。物理概念有严格的科学界定。同一物理概念在不同的物理学识水平阶段严密的程度不同。一些能力较差的学生对物理概念的界定模糊不清,思维混乱,解题注意分配不合理。为了解决这个问题,我引导学生强化以下几方面意识:1.增强物理概念的物质意识。每引入一个力学概念,应充分利用实验或学生生活积累的已有经验,把物理概念建立在充实的物质基础上。

2.强化物理概念的界定意识。速度与加速度二者仅一字之差,都是力学中的重要物理量。一些认知策略较差的学生把速度与加速度归结在一个“光环”上,认为速度为零,加速度必为零。在这里描述物体运动快慢与运动状态变化快慢是速度与加速度的界定。速度和速率、功和功率、动能和动量、重量和质量等也是一字之差,它们的物理意义却不相同。功和能的单位相同,前者是过程量,后者是状态量,它们也有严格的界定。

学生树立界定意识可养成良好的科学素质,有利于增强解题思维的自我调控意识。

3.培养创造思维意识。力学解题时“双向思维”的设计,给学生创造了发散思维的条件。

三、运用规律、感知范围、网络信息、逻辑思维

中学学习的力主要有:牛顿运动三定律、万有引力定律、机械能守恒定律、动能定理、动量定理、动量守恒定律等。一些能力中下的学生把物理规律成立的条件及适用范围置于思维盲区,需要对已建立的解题信息加以选择。

1.根据物理过程选择规律。

2.从已知条件选择物理规律。

3.从解题结果检验物理规律选择的合理性。

四、设疑开拓、点拨解惑、触类旁通、深化思维

课本上的力学习题是教学大纲的最低要求,一些能力较强的学生从中获取了探求知识的方法,思维敏捷。一些能力较差的学生解题一旦受阻,思维停滞,需要点拨才能展开。通过设疑点拨探究解惑,学生思维进入新的层次。

1.指导语点拨。

2.资料点拨。

3.情境点拨。

4.交流点拨。

5.一题多解点拨。

在力学解题中增强解题思维的自我调控意识是发展智力、培养能力、提高素质的必要条件。在力学解题全过程中有计划、有目标、由简到繁、循序渐近、反复多次地引导学生自己实践,是提高力学解题效益的充分条件,中学生力学习题难的心理障碍可以排除。

物理力学论文:物理力学教学法管理论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理力学教学论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理力学教学研究论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理力学教学论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理力学教学论文

[摘要]当代大学物理力学教育应该如何发展,如何改进能够更好的教授学生学习知识是一个很重要的问题。下文笔者主要从两个方面来进行论述:物理力学教育现代化和培养学生科学思维。

[关键词]大学物理,力学教学,教育观,科学思维

卢嘉锡院士指出:“当我们注重面向21世纪培养高等科技人才时,科技和社会发展要求我们培养的人才必须把握现代科技的最新成就,必须具有较强的能力和宽厚的基础,这就要求教学内容和课程体系必须现代化。”大学物理力学属于本科教育中一门必修的基础课程一个知识点,它的重要性源自于物理力学对社会科学进步的基础作用。很多学生心中都有这样的疑问:学学物理力学有什么用?言外之意很明显,似乎没用,那何必费那么多的精力去学这门相对较难的知识呢!在多年的教学实践中我们不断探索如何使教学内容体现时代特色。大学物理力学教育需要从多方面进行改革。教学手段现代化是其中的一项重要内容。充分利用现代化的教学手段,才能激发学生的学习爱好,提高学习效率。

在现代的物理力学教学中应当充分使用现代教育技术。以现代信息技术为手段,通过对教与学的实践过程,对文字教材、数字音像教材、电子教材、计算机及网络的设计、开发、使用、治理和评价,促进教与学最优化的理论与实践。大学物理力学教育需要从多方面进行方法改革。教学手段现代化是其中的一项重要内容。现代化的教学手段,才能激发学生的学习爱好,提高习效率。主要可以从以下几方面来进行现代教育技术改进:

1.将多媒体技术应用到物理力学教学

将传统得教学方式与现在教学方式相结合,充分利用多媒体资源。多媒体教学是指在教学过程中,根据教学目标和教学对象的特点,合理选择和运用现代教学媒体,并与传统教学手段有机结合。以多媒体信息作用于学生,形成合理的教学结构。达到最优化的教学效果。它可以使传统的枯燥无味的教学变得生动有趣。它是以视听教学理论、现代学习理论、教育传播理论为理论基础的。利用多媒体课件教学的优点主要有:首先,可以拓展教学内容,为教师提供更多的教学资源。例如,可以在万有引力知识点,做得更形象,利用多媒体将自然界的苹果落地形象再现,也可以将老师课前构思好的内容,用幻灯片展示给同学们看;其次,可创设虚拟的教学情境,激发学生的学习爱好,例如,可以做一个乘客在公交车惯性现象的一个视频片断,同学们将会更好的理解什么事惯性;第三,可使教学难点具体化、形象化,便于化繁为简,变难为易,例如,在讲刚体的角动量时,可以将现实生活中的一个具体的实例来进行讲解,这样可以将非常复杂的知识利用生活中常见事物形象描述出来;第四,可培养学生观察、分析、联想、想象能力,拓展思维空间,例如,播放一个小的力学片断给学生,让他们去从中提出问题,并且运用物理力学知识解释,为什么;第五,可使学生的视觉、听觉等多种感觉器官综合运用于学习。从而提高学习效率。例如,可以将一些重要的内容,或者一些物理力学学者的重要演讲播放给学生们听,形象具体,加深记忆。

2.物理力学教学网络化网络化教学是现代教育的一种重要改变。随着计算机网络的日益普及。网络全球化,网络资源无地域限制,利用计算机可以访问遍及世界各地的信息资源。进入信息时代,我们可以将信息高速公路作为基本的平台,通过计算机实现跨国家、跨地区、跨民族、跨人群、跨领域的语言交互、思想交互、情感交互、信息交互、文化交互。

便于教师和学生进行更广泛的交流,内容之丰富,资料之完备,从所谓有。与传统教学媒介相比,教学网络化可以充分调动学生的主动性,改变千人一面的、单向的、固定的教学模式。教学网络化具有以下特点:教学过程的交互性;教学资源的共享性;教学信息的综合性;教学方式的先进性;教学目标的多样性;教学内容的丰富性。

网络信息技术与物理力学教育的一体化.要求逐步打破传统物理课堂的封闭围墙.把物理教育带入到这个无限广阔而又全新的领域,促使物理力学学习不但在时间和空间上得到拓展.而且使课堂主体也得到拓展。物理课堂将成为一个被无限拓展的无比宽泛的概念。课堂时空的宽泛,时时是课堂.处处是课堂。只要有一台计算机,哪里都可以成为力学课堂:只要开机,就可以上课,进行在线阅读、在线实验、在线讨论、在线交流等力学综合性学习与实践活动。课堂主体的宽泛,人人是教师,人人是学生。在在线空间里,学生通过网络,通过远程登录,就可以很便捷地进入世界各地的各式各样的力学课堂.去接受世界各地力学老师或其他专业老师的远程力学教育。同时,通过网络,通过电子邮件、网络新闻组和电子公告板,学生还可以把自己的力学知识传递给他人,可以指导他人进行力学学习,自己摇身一变,又是一个地地道道的力学教师.具有了学生与教师双重身份。

借助虚拟现实技术使学习者沉浸在虚拟环境和情节里.在极富真实感的状态下与电脑交互。运用这种技术可以构建起一个与现实物理课堂几乎一样的。甚至比现实物理课堂更具魅力。例如,可以重现物理实验、可以演绎物理发现等等的逼真的在线物理课堂。这虚拟课堂将是师生充分发挥主动性和创造性的在线教学与在线学习的主阵地。

3.对物理力学实验进行现代化改进

很长时间以来,一些高等院校大学物理力学实验教学基本上处于一种封闭的状态。多年不变的教学体系和教学内容与当今飞速发展的前沿科学新理论、新技术严重脱节,陈旧落后的实验教学设备。因袭多年的传统教学模式和手段更是远远落后于科学技术进步的步伐。有的课本要求的实现在学校的力学是现实居然找不到任何实验器材,想做实验无实验可做,想研究现象无现象可以出现,学过东西只知道其然,不知其所以然。只能依靠死记硬背来把握一些知识,没有了实验这种形象地教学方式,物理力学自然变得更加难懂,不轻易理解,如此恶性循环。因此,学生对力学实验课越来越感到枯燥无味,严重地影响了学生学习的积极性、主动性、创造性以及现代科学思维方法的形成。

演示实验的好处:由于大学物理实验需要很长的时间.因此往往难以在课堂上完成力学物理实验讲解。在课堂上引入先进的物理力学实验课件,利用声音和色彩给学生留下直观的现象.可以加深学生的感知程度,使学生牢固地记住知识点。

仅仅充分使用现代化的技术手段丰富课堂内容还是不够的,还应该充分培养学生在大学物理学习中科学思维。大学物理课程教学,除向学生传授物理知识,更要对学生进行科学思维的培养.这不仅对后续专业基础课和专业方向课的学习奠定良好的逻辑基础,同时对学生毕业后的实际工作将起到深远的影响.主要应培养以下几个方面:1.培养学生的辩证思维

辩证思维是指在思维过程中,由抽象上升到具体,获得其理性熟悉的最普遍的科学思维方式.理论基础是辩证唯物主义.利用辩证思维来熟悉各种物理现象,学习和理解各种物理规律几乎贯穿了整个大学物理教学过程.如作用力与反作用力等内容的学习中,教师都可引导学生利用辩证思维来加以理解.例如,在学习惯性的斜坡下滑问题时,学生一开始碰到惯性于什么相关时,很轻易理解重力一种分解,事实上,还涉及反作用力在华东过程中的影响.伽利略关于摩擦力的实验。彼此相对安放两个斜面,当球从一个斜面的顶端滚下去后,即沿对面的血面向上滚,达到差不多原来的高度。他推论,只是因为摩擦力,求才没能严格地达到原来的高度。然后,他减少后一些面的斜率,球仍达到统一高度,但这是它要滚的远些。学率越小,球达到的统一高度需要滚得越远。这时,教师应有意识地引导学生进行辩证思考,分析上述现象进一步熟悉理得作用力与反作用力的本质特征。这样,学生就辩证地理解到理得作用力与反作用.

2.培养学生的逻辑思维

逻辑思维是在感性熟悉的基础上,运用概念、判定、推理等形式对客观世界间接的、概括地反映过程,是科学思维的一种最普遍、最基本的形式.在逻辑思维方法中,归纳和演绎是运用得较为广泛的两种思维方法,在课堂教学中应注重培养学生的这两种思维方法.归纳是从个别到一般的思维方法,物理课中很多力学律现都是在对大量个别现象观察。和研究的基础上,通过归纳总结而获得的.例如,牛顿在总结了伽利略等前辈对自然界机械运动的观察与实验结果基础上,归纳出了闻名的牛顿运动三定律.教师在讲授上述相关知识时,可提醒学生对这一看似简单,却又应用广泛的科学思维方法加以重视.

但归纳法的局限性在于它只能根据已经把握的一部分事物的某些属性进行归纳,无法穷尽同类事物的全部属性,因而所得结论带有较大的或然性.它与其它方法结合起来,就成为了真正的科学思维方法.因此,在培养学生利用归纳法来分析问题的同时,还要培养学生利用演绎法来进行推理,使学生的逻辑思维得到较为全面的练习.

3.培养学生的形象思维

形象思维是在感性熟悉的基础上,通过意向、联想和想象来揭示客观对象的本质及具体运动规律的思维形式.在物理学中,利用形象思维来揭示物理规律的例子很多.例如,阿基米德从跨入浴盆洗澡发现水从浴盆中溢出而受到启发,从而发现了浮力定律。又如力学中的例子:在杂技表演中,演员平躺在沉重的钢板下,两个大力士用铁锤轮番敲击置于钢板上的砖块,结果砖碎,人却丝毫未受损伤。我们针对为什么重锤击不伤人这一问题展开讨论,则可运用动量定理,揭示了杂技表演的秘密。教师在大学物理教学过程中,可借助上述一些物理问题的实例,培养学生运用形象思维来更好地理解和把握物理规律,从而养成形象思维的良好习惯.

结束语:大学物理力学内容是对大学生进行创新素质与能力培养的极好知识,大学物理力学教学内容、教学方法、教学手段等方面进行的上述改革,充分利用多媒体技术和网络技术,将多媒体和网络开始大量运用于学科教学中。利用多媒体和网络进行物理力学理论课程厦实验课教学的主要方法与策略。对促进学生知识、能力、素质的综合提高,起到了积极的效果。我们需要进一步紧密结合物理力学的教学,在新的教学理念中强调对学生开展自主创新素质与能力培养的深层次研究与实践,以此更好地发挥物理课程在人才培养过程中的积极作用,为实现知识与能力的双重培养目标而努力。

物理力学论文:物理力学教学讨论论文

中学物理知识内容是物理学的初级层次.严格地讲,它的科学性、系统性都受到了一定的限制.它只是阐述了物理学中最基本、最基础的知识,并不是十分严谨的物理理论.其主要内容是经典物理学的基础知识,而以力学、电学为重点.本文就力学部分的教学法谈点看法.

一、从全局观点分析力学部分教材

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

二、物理教学即要发展学生的智力又要培养学生的能力

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

培养学生的自学能力是教师的一项重要工作任务.调动学生的学习积极性,就得改变由教师“一讲到底”的状况,避免由于教师教学方法的单调,而使学生产生厌烦情绪.

总之,以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体,形成一个系统的完整框架.所以系统化、结构化的教学,使学生头脑中形成力学体系的清晰图象,有益于培养学生的探索精神,从被动的学习转为主动的学习,才能用自己的智慧和力量去攻克学习难关,取得良好的学习效果。

物理力学论文:物理学中的量子力学概况

此乃特殊重要文稿,几乎涉及物理世界全部问题。文中全部用8位数字有效精度并与实验完全相符的计算结果表明下述原理成立:

〖测得准原理〗:世间万物,无例外,都是测得准的(准确程度最终都将取决于普朗克常数h=2π?的准确度),绝非测不准的;世间只存在测不准的学者,并不存在【测不准原理】——《量子力学》的基本原理。

文中用大量无可否认的事实,全面、系统、严格地证明了量子力学——世界权威理论,纯系伪科学。其基本原理——【测不准原理】系反科学的理论,由此量子力学已把科学引入歧途,并使之陷于恶性循环不解之中!

由于量子力学已修成了诡辩内禀属性,任何单方面对其论说全然无效,必须给量子力学以全面充分曝光,所以篇幅显得较长。实乃:

有道僧是愚氓忧可训,

奈何量子愚氓胜和尚!

第一章.世界是测得准的,并非测不准的

乍看,题目好象哲学的。不屑哲学,只谈物理。

大量研究表明,目前为止的实验已经给出物质世界准确信息,物理学重要任务之一就在于找出这信息并揭示其内在规律。遗憾的是,目前为止的理论(无例外)均未能如此。然而国内外学界却一致认为理论物理大厦框架——《量子力学》已经建成,剩下只是装修和美化了。

但经本文研究表明,《量子力学》对一些基本物理学问题的实质并不清楚,往往似是而非。然而《量子力学》却娓娓动听、夸夸其谈,实则以其昏昏使人昭昭!请看事实:

1.1关于“量子化”根源问题。

微观世界“量子化”已被证实,人们已经公认。但接踵而来的就是“量子化”根源问题,又机制怎样?这本是物理学根本任务之一。已有的理论包括爱因斯坦、玻尔、量子力学都未能回答。然而量子力学家们却置这本职任务于不顾,翩翩起舞与数学喧宾夺主、相互玩弄!

就是说,《量子力学》是在未有弄清量子化根源前提下侈谈“量子”的“科学”。其结果只能使原子结构凭空量子化,量子化则成为无源之水,无本之木。这就是目前物理科学之现状!

可有人,例如一位量子力学教授辩论时说:“量子化是电子自身固有属性,阴极射线中的电子能量也是量子化的”。

虽然,这量子力学家利用了“微小量子”数学“极限”概念进行诡辩,显得很聪明,但却误了人类物理学前程!

不可否认的事实是:阴极射线中的电子、X射线韧致辐射电子、高能加速器中电子或其它自由电子能量都连续可变,决不表现量子化!这无疑表明量子化不是电子自身固有属性。那末,原子结构中能量量子化必有其它原因。显然这是基本物理学问题,作为理论物理又是非弄清不可的问题。其它科学例如数学,由于任务不同尚可不必关心量子化根源问题。然,作为理论物理决不可以!本文如下将准确具体讨论量子化根源问题以及物质世界又怎样量子化的,并给出8位数字有效精度与实验完全相符的计算结果。1.2理论与实践关系问题

既然凭空将电子能量量子化,就难免臆造之嫌,所以《量子力学》就下意识往实验上靠――“符合”试验。然而,既下意识就难免拙劣,请看事实:

世界著名理论物理第六册——《量子力学》(文献[1])中著:“量子力学,可建立于数个基本假定上,大体上这些基本假定分属两大项……,两项的假定便构成一量子力学完整系统”。

这明确表明,量子力学就是建立在基本假定上的(种种猜测)。“科学学”研究还表明:任何建立在基本假定上的东西都不可能是科学!然而量子力学家们却娓娓动听说:“量子力学是建立在实验基础上的科学”。这不是弥天大谎么?!

时说:“这是一基本假定”。并告诫人们:“不可懂”!就是说(1)式不能用任何数学——物理方法导出,即:不否认这是一种猜测。然而,(1)式就是昭著世界的“波动方程”的基础,也就是量子力学的理论基础。

所以确切地说,量子力学就是建立在基本假定上的种种猜测。这分明表现的是量子力学家们主观意识!

研究表明,量子力学所谓实验基础,首先在于德布罗意“物质波”理论。认真研究表明,物质波究竟是什么?德布罗意本人未有弄清,后人至今仍未弄清,又怎能说“建立在实验基础上”呢?!

研究表明,量子力学的实际过程是:德布罗意对自然现象进行一次连他自己也弄不清的抽象(猜测)(以下证明),提出“物质波”概念。量子力学对这不清的概念又进行一次抽象(猜测)(以下证明),提出“波函数”(Ψ)概念,并且通过一种算符将其作用到一个基本假定即(1)式上,便铸成了著名的“波动方程”——量子力学的理论基础:

由于量子力学凭空引进“波函数Ψ”,实际上就赋予了电子神奇性质。正是这种神奇性质使得量子力学具备了非凡诡辩能力。

1.3量子力学诡辩伦理

1.3.1关于理论基础诡辩

以上及以下讨论都证明,量子力学是,由于缺乏了解,错误地估计了试验(以下严格证明),用了错误的基本假定(不能由任何合理方法导出)而形成的,错误理论。然而量子力学家们却口口声声:“量子力学是建立在实验基础上地科学”。这分明是在诡辩,再加上社会意识,量子力学又具备了狡辩能力。1.3.2关于物质波的狡辩

对于“物质波”概念,量子力学[1]应用了三个基本假定:其一假定“对易关系”即(1)式,由此构成量子力学骨架;其二假定“测不准原理”,由此编造了电子“几率云”图像;其三假定“波粒互补原理”,这种原理本身就是一种诡辩,因为“波粒二象性”问题目前仍属困难不解的世界性难题。于是量子力学精心泡制出“波函数Ψ”并强加给电子。经如此之假定,电子便具备了神奇性质——量子力学家们的主观意识。

然而“波函数”的物理意义究竟是什么?量子力学家们着实应向人们交代清楚,遗憾的是任何学家都未能如愿。实际上对波函数Ψ的真实物理意义,量子力学家们也只是:你知、我知、天知、地知,凡人不可知。这分明是狡辩理论!

如果需要,量子力学(文献[1])首先拿出:

很明显式中2πa是粒子中心轨迹。于是说,物质波是粒子轨迹波动。此说极易征服初学者,但此说问题也易败露。量子力学立即改变说法,言(3)式系近代物理概念,对此不能用经典概念理解。于是又出现:

1.3.3关于“经典”与“近代”狡辩

量子力学经常炫耀是近代科学理论,已经超脱经典,又不时贬低经典理论。

然而,以下讨论完全证明:量子力学除了主观臆造因素外,完全没有离开经典物理一步,也未超出经典物理一点,就连波函数Ψ的表达式(无例外)也完全是经典数学和经典力学关系式,并且以下用不可否认的事实——量子力学所犯经典错误,表明量子力学连经典理论也不通。所以,量子力学所谓超脱经典,正在于一些基本假定连同主观臆造。在此种意义上说,量子力学不仅超脱经典,而且也超脱科学!1.3.4量子力学方法论狡辩

确切说,量子力学不能给波函数Ψ做出完整的真实物理学定义,但在理论中却轮番使用:①波函数Ψ表示粒子中心轨迹波动;②波函数Ψ表示粒子出现几率;③波函数Ψ表示弥撒物质波包三种概念。有了三种概念,又可各取所需,自然一切物理问题都“迎刃而解”了。

然而,量子力学同时又“有权”轮番否定这三种概念。但却不是自我否定,而是另一种需要——否定其它理论,其中包括真理。要指出的是,量子力学轮番使用三种概念,又轮番否定这三种概念,并不是在同一时间同一地点进行的。因为应用一种概念的同时又否定这种概念,这是卖矛又卖盾的故事,连儿童都知道是蠢事。显然量子力学家比儿童高明得多,这叫认识方法狡辩。

似这样,在哲学面前,用“建立在实验基础上”量子力学可以蒙混过关;其它科学由于研究任务不同,不会关心“量子化”根源,又由“领地”限制也无权过问波函数的真实意义;量子力学又可各取所需轮番应用和轮番否定①、②、③三种概念。于是,量子力学便以狡辩赢得了世界理论权威!

1.4关于“符合”试验问题

以下将证明,量子力学所谓符合实验,实际上系对实验的猜测。量子力学很善于做貌似合理实则谬误的猜测(以下揭示),并美其名曰“符合”试验。其实,对实验的真实物理过程并不清楚,又何谈相符呢?请看事实:

基于玻尔理论的成功,量子力学作两项重要推广。心理学原因,人们对这种推广又愿意接受。

4.1大自然内在本质规律之一——辐射能场客观存在

注意教材书(文献[9])已有“辐射场”及“能量场”的物理学概念。但囿于理论局限,使得教材书对这种场的描述是静止的(机械的)、孤立的(与物质世界无必然联系的)、无源的(原因不清),因而也是抽象的(没有物理意义的)。

上已证明,原子中能量量子化的根源是原子核,量子化是原子核自身性质。值得物理学注意的是,原子核这种性质并不孤立存在,它同时还严格地规定着所有外部世界。因而使得电子、原子、分子、物体、天体、宇宙都只能有唯一稳态位置和结构。这就是大自然最基本的内在本质规律。也就是普适方程即(20)式所揭示的规律。

那末,具体规律是什么呢?请看:

4.2辐射能场(存在)定理

研究表明,辐射能场准确存在可用定理表述。

〖辐射能场定理〗:任何粒子(含场粒子及天体,无例外,下同)在其周围都形成(存在)一种辐射能场,这种辐射能场可用普朗克常数?和量子数n=0,1,2,3…准确具体描述。在微观辐射能场表现为量子化,在宏观则表现为大量粒子的简并统计结果。

4.3辐射能场实质

辐射能场实质系以粒子为中心,向周围空间抛射场粒子流(这里主旨中性场粒子流,对于电磁场当有别论),这种场粒子流经电子集约化就成了光子。研究也表明,任何光子包括X射线都准确如此。参见(15)式,据此不难描述任何光子的自身结构。并且可以证明任何光子的静止(如可能)质量均不为零。认为光子静止质量为零,还是量子力学根据“相对论”瞎子摸象猜测结果。

这已表明光子的真实粒子性。并可准确具体证明,所谓波动性实际上是普朗克常数与量子数相互作用的一种客观表象,任何光子都不存在任何物理意义上的波动属性。

4.4辐射能场形象

研究表明,辐射能场形象与点光源的光通量完全一致。对于原子核,其辐射能场可用图(3)准确表示:

图中箭头方向表示辐射能流方向,其线密度表示能流密度,n为量子数。

4.5辐射能场性质

研究表明,辐射能场实质系以光速抛射场粒子流(粒子上限为中微子),故,辐射能场具有排它性。原子核的辐射能场首先排斥核外所有电子,任何电子也因此未能落到核上,这是事实。所以,电子未能落到核上量子力学的任何解释都只能是自欺欺人的胡言乱语!也所以,玻尔对电子的担心完全多余。

需要指出,辐射能场这种排斥作用,通常主要表现为能量形式。相形之下排斥力效应很小,一般可忽略。这与太阳光辐射的能量效应十分明显,而太阳光的压力效应十分微小,完全相似。不过在研究宇宙膨胀时,完全不可忽略天体辐射的斥力效应。就是说,“宇宙斥力”存在。然,囿于历史和理论局限,爱因斯坦在提出宇宙斥力概念后,又不得不自我否定。

4.7辐射能场的实验验证

4.7.1太阳的辐射本领已足够大

目前世界公认太阳发射本领(文献[2])为3.8×1033(尔格/秒),这相当于太阳每秒抛射出质量为m=4.2×109(千克)物质。但如上可知,太阳实际发射本领远大于此。因为太阳光仅是辐射能流的一部分,这种能流粒子上限为中微子。

4.7.2宇宙正在膨胀

宇宙正在膨胀,表明“宇宙斥力”存在,这是宇宙中心辐射能场性质。宇宙正在膨胀恰系宇宙中心辐射能场的客观真实写照(或曰照片)。4.7.3“太阳风”的存在

文献[10]介绍的“太阳风”正是本文定义的太阳辐射能场,太阳风就是太阳辐射能场的客观真实写照。该文献给出了对太阳风考察的卫星实际探测结果(文献图示略)。这可谓太阳辐射能场的真实实验验证。

4.7.4第四个验证是,任何原子中任何电子均未能落到核上,这是事实

不仅如此,人为方法:高能阴极射线、X射线或高能加速器也很难将电子打到原子核上。这绝非因碰撞截面太小,总会有几率。实际上正是由于原子核具有排它性的辐射能场排斥效应所致。由(22)式可见,电子得到的原子核排斥能与距离平方成反比例。在核半径处排斥能十分巨大,以致可忽略静电引力能。简单计算表明,电子必须具有200倍C(光速)才可能到达核半径处。也因此,玻尔对电子的担心完全多余!

需要指出,对此类问题,量子力学仍会故伎重演——狡辩。但经如上及以下分析论证,量子力学纯系主观臆造,对物理学实质问题全然无知,已经使得量子力学的狡辩不再有任何效力。

物理力学论文:初中物理力学有效教学策略

【内容摘要】随着新课程改革的不断推进,我国的教育事业正有序地实现着新的发展目标。不断提高教学有效性是当前教育行业的共识,初中物理作为重要的自然学科之一,从教学目标和教学方法上都积极强调有效教学。文中在明确有效教学的理论认知基础上,结合初中物理的教学实际,提出了具体的物理力学有效教学策略供广大教员参考。

【关键词】初中物理 力学 有效教学

在新一轮课程改革持续深入背景下,我国教育领域已经加强了对教学有效性的关注,力求通过实践来取得积极突破。有效教学理念的提出,能够进一步激励学生保持高昂的热情和兴趣投入到理论学习中,同时能够在积极实践中加强对理论的巩固和完善,提供知识的系统性。初中阶段物理学科的教学也十分重视有效教学,需要从业者在长期的教学中总结教学方法,从事实现有效的教学目标。

1.有效教学的理论认知

有效教学需要广大教师的积极努力才能完成,首先要有系统完善的理念作为教学指导思想,其次教师应该坚持按教学理念开展教学,关键在于考察学生在一段时间内的成绩提升与能力增长状况。有效教学行为必然强调过程和结果的有效性,因此要想获得有效性,就需要教师坚持几项原则:第一,明确目标。只有教师清晰界定学科教育的短期或长期教学目标,才能更有针对性地编排教学内容,同时采用适当的教学方法,让学生在正常的学习状态下培养更高的能力。学生在一个考察时限内,与教学目标对照已经准确完成或者有所超越,自然实现了有效教学。第二,激发兴趣。有效教学讲求学习效率,而学生的兴趣因素可以直接影响学习效率的发展程度。教师要始终关注学生的兴趣,结合实际状况适当调整教学形式和内容,让学生愿意积极主动的体会学习乐趣,从而提出教学有效性。第三,优化方法。学生在不同阶段的教学具有一定的差异性。初中阶段的学生与外界接触互动认知的能力尚且需要提高,因为教师如果对于理论的讲解能够在不断优化的教学方法中变得通俗易懂,当然能够提高学生的有效学习。

2.初中物理力学课程的有效教学策略

2.1加强课前准备工作

课堂教学的稳定开展离不开教师在课前的积极备课。加强初中物理力学单元的课前准备工作必然促进课堂教学的高效进行。初中物理教师应该认真慎重的对待力学单元的备课。首先要全面了解当前学生的自然学科基础,通过日常教学观察和教学互动了解学生的个性、特点、学习习惯和知识水平,要设计一定的导入性内容,使得不同层次的学生都能够在适当的课程引导中有效的进入力学内容。要掌握物理的基本概念,并且要试着通过通俗易懂的解释来定义,让学生能够更好更快地形成认知。其次,应该对当堂课程的内容进行结构创设,通过拆分教学任务,将其中的重点与学生的生活实践相互结合。如讲解“浮力”内容时可以讲解人在游泳中遇到的浮力,船在水面行进需要的浮力,飞机在高空飞行需要的浮力等等内容,当讲解“大气压力”内容可以在课前设计小型实验,准备简单实用的实验材料。可以选用一个熟鸡蛋或一个口径略小于鸡蛋外径的瓶子。开始教学实验时,首先在瓶子中倒入一定量的热水后倒出,同时将熟鸡蛋剥皮后迅速放置在瓶子口,随着时间推移能发现鸡蛋缓慢地被吸入到玻璃瓶中。这样的实验操作简单,但是现象生动直观,准确反映大力压力的存在与作用效果,自然能够为课堂上理论知识的讲解提供巨大的辅助效果。

2.2加强课堂实验互动

物理作为自然学科中的重要内容,理论知识有时显得较为抽象。力学单元教学中,“力”就属于摸不着看不见的概念,如果对于力的相互作用只是结合课本完成讲解,学生的接受程度和掌握效果必然层次不齐,无法达到良好的教学效果。只有强调课堂实验互动,结合物理实验才能更好的让学生感受到力的存在,有助于理论结合实际来分析思考和解决问题。实验的器材并不需要多么复杂,如前文中提到的利用熟鸡蛋和瓶子完成大力压力的实验一样,大量的生活材料都能用来完成力学实验教学。如让学生在一个较为粗糙的案板上,让学生选择书、笔、文具盒、粉笔盒等不同物品在水平方向推出,观察推出后滑动的效果。从而让学生了解物品在滑动中受到了人的推力,案板的摩擦力,自身的重力等不同的受力影响。要想滑的更远,可以推的更重些,可以将案板打磨光滑些等。通过简单的实验例子,学生能够对物品运动中的受力过程有所了解,有效地掌握了课堂教学理论。

2.3加强现代技术应用

现阶段,我国的义务教育已经大范围推行多媒体、信息化技术在教学中的应用,基于计算机网络技术的发展,使得教学有效性变得更加明显。初中物理的力学有效教学也同样需要加强现代技术的应用。从而确保各种力学的抽象定义能够通过图片、音频、视频等内容得到形象展示,这样的教学环境中学生的感官得到了充分的刺激,从而对知识点的印象更为深刻,对于理论的理解更为透彻。例如教师可以找来正式的科学实验视频,让学生感受大型科学实验中的力学现象,从而准确理解物理基本概念,为有效学习其他内容也奠定了坚实的基础。可以制作FLASH动画,将物体的受力进行对照拆分讲解,对于力的作用对象、力的转移、力的递进等不同现象进行动态化的展示,有助于增强学生的理解,提高学生的记忆。

结束语

力学知识是初中阶段的物理学科的重要内容,教师应该通过积极优化的教学方法,借助不同的教师手段和技术,通过演示多样化的实验让学生在愉快融洽的教学氛围中掌握力学知识,实验物理的有效教学。相信有效教学理念下,教师能够开发出更多的针对性策略,从而增强学生的物理知识,提高应用物理的能力。

作者:汤本政 单位:江苏省徐州市撷秀初级中学