HI,欢迎来到好期刊网,发表咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

电磁感应效应集锦9篇

时间:2023-10-26 09:59:42

电磁感应效应

电磁感应效应范文1

关键词: 奥斯特;法拉第; 电磁感应现象; 楞次定律

因磁通量的变化产生感应电动势的现象(闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中会产生感应电流,这种现象叫电磁感应)。电磁感应现象的发现是电磁学发展史上的一个重要的成就,它进一步揭示了自然界中电现象和磁现象之间的内在本质联系。促进了电磁理论的发展,证实了自然科学中统一的哲学观点。同时由于电磁感应定律的确立,使得电能得以广泛的应用,引发了第二次科技革命。使得现代的电力工业和电工以及电子技术得以建立和发展。

在物理学的发展史上有很长一段时期内未找到电与磁的联系。丹麦物理学家奥斯特一直相信电与磁之间一定有着某种联系,并且开始了电磁统一性的试验研究。直到1820年,他发现了电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题。

1831年8月,法拉第在软铁环两侧分别绕两个线圈,其一为闭合回路,在导线下端附行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。法拉第立即意识到,这是一种非恒定的暂态效应。紧接着他做了几十个实验,把产生感应电流的情形概括为5 类:变化的电流 ,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。法拉第发现电磁感应现象不是偶然的,同他的坚持不懈是分不开的。从实验的一次次失败到失败,最终发现了电磁感应现象。

电磁感应现象产生的必要条件是有一个外加磁场且磁场中有导体。由于导体的形态有多种,为便于分析学习,我采用模块化的思想,把磁场中的导体分成两类模型:一是直导体(包括各种可以等效成直导体的形状,如圆弧状,波浪状,折线状等);二是螺线管(包括单环导体)。

电磁感应效应范文2

一.从磁通量角度来说,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即阻碍原磁通量的变化。具体表现为:当原磁通量增加时,感应电流的磁场就与原磁场方向相反;当原磁通量减少时,感应电流的磁场就与原磁场方向相同。可以简记为“增反减同”。

二.从相对运动角度来说,感应电流的效果阻碍所有的相对运动。可以简记为“来拒去留”。从运动效果上看,也可以形象地表述为“敌”进“我”退,“敌”逃“我”追。

如图1所示,若条形磁铁(“敌”)向闭合线圈前进,则闭合线圈(“我”)退却;若条形磁铁(“敌”)远离闭合线圈逃跑,则闭合线圈(“我”)追赶条形磁铁。

三.从闭合线圈的面积角度来说,感应电流的效果致使电路的面积有收缩或扩张的趋势。收缩或扩张的趋势是为了阻碍磁通量的变化。若穿过闭合电路的磁感线皆朝一个方向,则磁通量增大时,面积有收缩的趋势,磁通量减少时,面积有增大的趋势。可以简记为:“增缩减扩”;若穿过闭合电路的磁感线朝两个方向都有,以上结论可能完全相反。

例如图2中磁铁靠近闭合线圈时,穿过闭合电路的磁通量增大,所以闭合线圈有收缩的趋势;反之,将磁铁远离闭合线圈时,穿过闭合电路的磁通量减少,线圈有扩张的趋势。

四.就电流角度来说,感应电流阻碍原电流的变化。即:

原电流增大时,感应电流方向与原电流方向相反;原电流减小时,感应电流方向与原电流方向相同。可以简记为:“增反减同”。比如我们学过的自感现象。

再如图3所示,电路稳定后,小灯泡有一定的亮度,现图2将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,图3在插入过程中感应电流的方向与线圈中原电流的方向相反,小灯泡变暗。这是因为插入铁芯,使穿过螺线管的磁通量变大,产生了感应电动势,其方向与原电流方向相反。

练习题:

1.弹簧上端固定,下端挂一条形磁铁,使磁铁上下做简谐运动。若在运动过程中把线圈靠近磁铁,如图4所示,观察磁铁的振幅,将会发现( )

A.S闭合时振幅逐渐减小,S断开时振幅不变

B.S闭合时振幅逐渐增大,S断开时振幅不变

C.S闭合或断开时,振幅的变化相同

D.S闭合或断开时,振幅不会改变

2.如图5所示,ab是一个可绕垂直于纸面的轴0转动的闭合矩形导线框,当滑动变阻器R的滑片自左向右滑行时,线圈ab将( )

A.保持静止不动

B.沿逆时针方向转动

C.沿顺时针方向转动

电磁感应效应范文3

关键词: 电磁搅拌技术;冶金行业;钢铁;质量;电磁力

中图分类号:TF777 文献标识码:A 文章编号:1006-4311(2014)07-0043-04

0 引言

早在19世纪六七十年代,亚瑟和达勒恩就提出了以水冷、底部敞口固定结晶器为特征的常规连铸概念。亚瑟倡导采用底部敞开、垂直固定的厚壁铁结晶器与中间包相连,施行间歇式拉坯。而达勒恩则提出采用固定式水冷薄壁铜结晶器施行连续拉坯、二次冷却,并带飞剪切割、引锭杆垂直存放装置。到20世纪二三十年代,连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。而电磁搅拌技术运用于连铸生产可以有效控制钢液凝固过程中的流动、传热、传质等现象,可以有效改善连铸坯的内部组织结构和表面质量,提高连铸坯质量。因此,连铸电磁搅拌技术成为国内外学者研究的热点。

我国独立进行连铸电磁搅拌技术研究始于20世纪70年代,以自主开发为主。到了80年代中期,改革开放逐渐深入,开始引进特殊钢连铸机和板坯连铸机,引进各种类型的电磁搅拌装置。经过三四十年的吸收和研究,我国的连铸电磁搅拌技术得到了长足发展,目前已经能完全自主承担搅拌器的设计、生产、应用,但是,电磁搅拌器的线圈却仍旧依赖进口,提高其使用寿命是当前连铸电磁搅拌技术发展的重要内容之一。

电磁搅拌器在运转过程中,线圈会发热,必须使用循环水降温,而线圈长期浸泡在循环水中或是经受循环水的冲刷,很容易导致线圈表面的防水膜和绝缘膜损坏、失效,进而导致漏电现象的发生。当漏电电流超过一定控制值时,必须及时修复线圈。因此,利用新技术延长线圈使用寿命成为连铸电磁搅拌技术发展的重要方向之一。

1 连铸电磁搅拌技术

连铸电磁搅拌技术可以有效提高连铸坯的质量和品质,其原理是:当连铸坯中的液态金属通过交变磁场时,电磁搅拌就通过不同形式的磁场发生装置使液态金属产生感生电流,而感生电流又与磁场的感应强度发生一定的作用,并产生电磁力,而电磁力就控制连铸过程中钢水的流动、传热、传质等现象,提高钢的清洁度,有效扩大连铸坯的等轴晶区,消除其中心疏松或是中心缩孔,从而达到优产的目的,生产出更多高质量连铸坯,生产出更多高质量钢材。从安装位置不同角度来说,连铸电磁搅拌装置可以分成以下五种类型:

1.1 结晶器电磁搅拌装置,又称为M-EMS。这种搅拌器适用于当前市场上所有型号的连铸机,主要作用是改善连铸坯表面质量,减少连铸坯内部的杂质,消减中心疏松。这种搅拌装置因适用于所有连铸机,因而也是目前应用最为广泛的搅拌器,一般安装在结晶器的下面,既可以安装在结晶器的,又可以安装在其内部,在实际应用中,多安装在。电磁搅拌器安装在结晶器的,其铁芯激发出来的磁场通过结晶器的钢质水套和铜管进入到钢水中,并借助感生电流与磁场作用产生的电磁力使结晶器内的钢水呈现左右或上下有规律的垂直旋转运动,这种搅拌运动可以改变连铸坯表面的质量。忽略拉坯频率的影响,结晶器内壁表面的磁通密度最大,结晶器内的磁通密度是不一致的,而电磁搅拌使得结晶器内的冷却变得更加均匀。在电磁搅拌作用下,早期凝固的地方被熔化与新进的钢水充分混合然后再凝固,而结晶器内搅拌的地方冷隔的深度就越来越浅。另外,结晶器电磁搅拌装置可以有效增强结晶器内钢水均匀凝固的能力,从而消减连铸坯表面的纵裂,改善其表面质量。

1.2 二冷段电磁搅拌装置,又被称为S-EMS。这种电磁搅拌装置的作用在于提高连铸坯内部和表面质量,与结晶器电磁搅拌装置组合起来,大大提升连铸坯的质量和品质。当钢水进入结晶器之后,结晶器的电磁搅拌装置迅速发挥作用,但是,单级的电磁搅拌装置会使得铸坯的下部聚集等轴晶,而上部却聚集柱状晶,这样就会导致铸坯内部出现缩孔、偏析现象,从而影响到连铸坯的内部质量。因此,在二冷段安装电磁搅拌装置是非常有必要的,一般可以在二冷一段和二冷二段分别安装一个电磁搅拌装置,二冷一段就在结晶器的足辊处,该处的电磁搅拌装置与结晶器电磁搅拌装置的作用是相同的,一般不会重复使用,也就是说:一般将二冷一段的电磁搅拌装置或是结晶器电磁搅拌装置与二冷二段电磁搅拌装置组合使用。二冷二段电磁搅拌装置作用在于细化铸坯的晶粒,它能使铸坯上部的柱状晶被流动的钢水打破,并生成大量的等轴晶,从而扩大铸坯等轴晶的范围,消减或是消除中心偏析、中心缩孔现象。

1.3 凝固末端电磁搅拌装置,又被称为F-EMS。当浇筑含碳高的特殊钢种时,一般会在液相穴长度的3/4处也就是靠近凝固末端安装一个电磁搅拌装置。在二冷段电磁搅拌装置的作用下,铸坯的下半部聚集等轴晶,如果这时直接将连铸坯拉出来的话,其上部的柱状晶就会向芯部生长,进而影响到铸坯的内部质量。而液相穴3/4处已经是凝固末端,钢水处于糊状,在偏析作用下,该部位的溶质浓度较高,容易造成中心偏析现象,如果在该位置安装电磁搅拌装置,打碎液相穴末端上部柱状晶的生长,并使其下沉分散覆盖到下部的等轴晶上,从而有效减少中心偏析现象,减少中心疏松现象,提高连铸坯内部质量。

1.4 组合式电磁搅拌技术,又被称为KM技术,就是说运用前文所提到的三种技术中的任意两种或是三种,形成组合效果,大范围内改善连铸坯表面和内部结构,减少中心偏析现象。

1.5 跨结晶电磁搅拌装置。跨结晶电磁搅拌装置安装在结晶器水套外边结晶器与足辊之间,在国内运用较少,只有少数大型钢厂从德国引进了该种电磁搅拌装置。跨结晶电磁搅拌装置的安装位置、磁场分布、磁感应强度、搅拌方式、钢水流动形式等都与前文所提的三种搅拌装置不同。就从其安装的位置来说,其作用是结晶器电磁搅拌装置和二冷段电磁搅拌装置作用的组合。在实际的钢材生产中,包钢运用跨结晶电磁搅拌装置取得了非常好的效果,大大改善了铸坯中心疏松和中心偏析,生产出来的重轨钢大方坯的中心碳偏析平均系数仅为1.15,等轴晶率高达45%-72%,中心疏松得到了明显改善。而前面三种电磁搅拌技术组合起来的效果也不如跨结晶电磁搅拌装置的效果,所以说,深入研究跨结晶电磁搅拌,并推动其广泛运用对钢材生产具有重要现实意义,有利于提高铸坯内部和表面质量,提升铸坯质量。曹建刚等人在《跨结晶器电磁搅拌器磁场特性测试和分析》一文中对280mm×380mm的方坯连铸机跨结晶电磁搅拌装置进行了磁场特性测试,研究结果表明,根据结晶器内外磁场的强度和差别合理选择搅拌工艺和电流强度可以有效提高搅拌效果和延长线圈的使用寿命。

2 电磁搅拌技术的工作原理以及用于冶金的机理

2.1 电磁搅拌技术的工作原理 一个完整的电磁搅拌装置由低频电源装置、感应器和冷却系统组成。低频电源装置把50Hz的工频电转换成两相正交的低频率电源,根据炉子大小、感应器的结构来确定频率,一般在0.5-5Hz之间。感应器由线圈和铁芯组成。冷却系统的作用在于冷却线圈和铁芯,提高其线圈和铁芯的使用寿命。

电磁搅拌技术的工作原理与普通的三相异步电动机的工作原理类似。感应器就相当于电动机的定子,由三相电源供电。当感应器的线圈内通入低频电流时,就会产生一个行波磁场,而磁场穿过炉底就作用于钢水,在钢水中产生感应电势和电流,感生电流又与磁场发生作用,产生电磁力,从而控制钢水的流动,起到搅拌效果。所以说,电磁搅拌技术是靠电磁力对钢水进行非接触性搅拌的,不会对钢水产生污染,只需要根据实际情况改变电流大小就可以调整电磁力大小,从而控制搅拌的力度。而且,电磁搅拌装置的搅拌方式也有很多,包括:强搅、弱搅、正搅、反搅、自动搅等,可以根据工业生产的需要选择合适的搅拌方式。

2.2 电磁搅拌技术的冶金机理 电磁搅拌技术的冶金机理表现在两个方面:机械效应和热效应。以前文提到的结晶器电磁搅拌技术为例,在实际生产中一般采用旋转搅拌方式,当钢水的旋转速度达到一定的限值时就会产生离心力,并使钢水中的杂质以及气泡聚集在中心,然后再被熔融保护渣吸收掉,从而使得铸坯表面和内部的杂质、气泡较少,提高铸坯的质量。在搅拌的过程中,旋转搅拌使坯壳更加均匀,从而减少了漏钢的可能性,一定程度上改善了铸坯的表面结构。前文也提到过,旋转搅拌可以增强电磁力的作用,并扩大等轴晶的生长空间,减少柱状晶,减少铸坯中心疏松,有利于铸坯内部结构的改善。

3 连铸电磁搅拌技术在冶金行业的应用

连铸电磁搅拌技术在我国的研究始于20世纪70年代,经过这几十年的研究和发展,连铸电磁搅拌技术在冶金行业得到了广泛应用,推动了我国冶金行业的发展,也促进了自身技术的进步。

3.1 连铸电磁搅拌技术在方圆坯连续铸钢中的应用

目前,连铸电磁搅拌技术应用最为广泛的就是方圆坯连铸钢,目前国内生产优质钢以及高碳钢的工厂都配备有电磁搅拌装置,电磁搅拌技术俨然成为提高铸坯质量的重要技术工艺之一,成为连铸机上必备的技术和装置之一。

连铸电磁搅拌技术就是在金属的连铸过程中通过电磁力控制液态金属的内部运动,从而达到提升连铸坯表面和内部质量的目的。安装在不同部位的电磁搅拌装置会起到不同的效果,这一点在前文已有详细阐述。而安装在不同部位的电磁搅拌装置也适用于不同类型钢种的生产。比如说:结晶器电磁搅拌装置适合于低合金钢、弹簧钢、冷轧钢、中高碳钢的生产;二冷段电磁搅拌装置适用于工具钢、不锈钢的生产;凝固末端电磁搅拌装置适合于弹簧钢、轴承钢、特殊高碳钢的生产。

在连铸电磁搅拌技术设计开发上,国外著名公司主要有:瑞士的ABB、意大利的DANIELI-ROTELEC、德国的CONCAST等,国内的著名企业是:湖南的科美达电气、中科电气等。虽然说国外公司在电磁搅拌技术的研发上时间早、投入多,但是在方圆坯连铸钢的电磁搅拌技术上,我国取得了巨大突破,尤其是在特大圆坯连铸钢电磁搅拌技术在世界处于领先地位。湖南科美达电气有限公司设计的?准900圆坯连铸电磁搅拌系统生产出来的圆坯连铸钢是世界上最大的。其设计出来的?准800圆坯连铸电磁搅拌系统运用到江阴兴澄特钢特大圆坯连铸机上,生产出来的圆坯连铸钢质量优良,第一次投产就达到了质量标准。第一次生产出来的?准800圆坯连铸钢的钢种为:42CrMo4,中心疏松为1级,而中心偏析、中心缩孔、中心裂纹均为0,质量优良。由此可见,连铸电磁搅拌技术应用于方圆连铸钢是有效的,在未来还将有更广阔的发展空间。

3.2 连铸电磁搅拌技术在板坯连续铸钢中的应用 连铸电磁搅拌技术应用于板坯连续铸钢的生产最早可以追溯到1973年的日本新日铁公司的君律厂,那是世界上第一台板坯连铸机二冷段电磁搅拌装置。到今天,连铸电磁搅拌技术应用到板坯连续钢的生产中,主要是将电磁搅拌装置安装在连铸机的结晶器和二冷段。

3.2.1 安装在结晶器的电磁搅拌装置主要作用是控制钢水的流动、传热。1981年,日本新日铁公司设计出基于双边行波磁场的结晶器电磁搅拌技术,到1999年,新日铁公司的连铸机基本上都配备了结晶器电磁搅拌装置,沿板坯宽面配置两台搅拌装置,安装在结余弯月面和水口侧孔之间,其电源是低频和三相,流动形式是水平旋转,它的主要作用是:较少铸坯表面的杂质和气泡,使铸坯坯壳均匀,减少漏钢,减少铸坯表面的纵向裂纹。

1982年,日本的KSC公司和瑞士的ABB公司联合研发出了基于直流磁场的结晶器电磁制动技术。将搅拌器安装在水口侧孔吐出的流股主流处,其作用是:减少铸坯内部杂质,减少纵向和横向裂纹,减少漏钢,提高拉速。

1991年,日本NKK研发出了基于四个行波磁场的流动控制技术,到21世纪,NKK又在此基础上开发出了多模式电磁搅拌技术。该技术需要在板坯连铸机的宽面上配置4个搅拌器,安装在结晶器的半高处,可以起到加速和减速钢水水平旋转的作用,其作用主要是:减少漏钢事故以及系统报警,减少条状和铅笔状裂纹,提高窄面的度,减少宽面上的中部纵裂,有效减少杂质、气泡在内弧侧1/4坯厚处的聚集等。

3.2.2 安装在二冷段的板坯电磁搅拌装置,其作用是扩大铸坯中心的等轴晶生长空间,减少中心偏析、中心疏松、中心缩孔,提升铸坯内部质量。而安装在板坯连铸机二冷段的电磁搅拌装置分成三种类型:箱式电磁搅拌器、插入式电磁搅拌器和辊式电磁搅拌器。箱式电磁搅拌器无论是安装还是维修都比较复杂,费用大,功耗大,所以一般不会安装箱式电磁搅拌器。插入式电磁搅拌器的安装流程是:在板坯两面各更换掉一根支撑辊,由非磁性小辊替代——在板坯两面的小辊间各安装一台搅拌器。插入式搅拌器的安装和维护虽然也比较复杂,但是其功耗非常小,搅拌效果也非常好。辊式电磁搅拌器就是将板坯连铸机扇形段的两面各取下一根支撑辊,然后再用电磁搅拌辊替代,起到支撑和搅拌作用。该搅拌器的功耗小,无论是安装还是维修都非常方便,无需对板坯连铸机进行较大幅度的改造,搅拌器安装的位置也非常灵活。

3.3 连铸电磁搅拌技术在有色金属熔炼中的应用 连铸电磁搅拌技术应用于有色金属熔炼最早是1968年瑞士ABB公司生产的铝熔炼炉电磁搅拌装置,目前,在全球有一百多台铝熔炼炉电磁搅拌装置在运行。而其制造商主要是瑞士ABB公司和我国的优利科公司,而科美达公司则从2005年开始进入研究有色金属熔炼电磁搅拌装置设计研发,目前已为厂家提供16台熔炼炉炉底电磁搅拌装置,运用计算机控制技术和交变频控制技术实现设备的长期运转,提高了生产效率和搅拌效果。

熔炼炉电磁搅拌装置能有效提高有色金属冶炼的效率和金属材料的质量,是提升合金材料质量的重要设备之一。其主要作用是:在有色金属的熔炼过程中,通过搅拌装置减少熔炼时间,使熔体表面和底部的温差变小,减少对熔体的二次污染,清除掉熔体中的非金属杂质,从而细化合金组织,降低能源消耗。

熔炼炉电磁搅拌装置的原理:当感应器中通过低频电流时,会产生行波磁场,而该磁场又使得炉内的溶液产生感应电流,感应电流在与当地磁场作用下形成电磁力,从而推动炉内溶液进行直线运动,而且,电磁力可以使溶液向上做倾斜状流动,从而逐步减小溶液上部与下部的温差。

3.4 连铸电磁搅拌技术在坩埚熔炼中的应用 电磁搅拌技术应用于坩埚熔炼中主要是改善材料的性能,目前,学界、实物界正将电磁搅拌技术应用于坩埚熔炼作为研究热点,一些著名公司也研发成功了应用于坩埚熔炼的电磁搅拌装置。伴随着国民经济的快速发展,市场对材料工业提出了更高的要求,科学院着力研究如何通过电磁搅拌技术改善材料性能。在这种研究形势下,应用于坩埚熔炼的电磁搅拌技术也呈现出多元化发展,比如说:磁场形态的多元化,既有旋转磁场,也有复合磁场,同时还有螺旋磁场等。再比如说:被搅拌材料的多元化,镁合金、铝合金、单晶硅等。

4 连铸电磁搅拌技术在冶金行业的成果

连铸电磁搅拌技术已在冶金行业得到广泛运用,而国内外许多著名公司也开始逐渐将研究视角延伸到其他行业中。就冶金行业而言,科学家经过多年的研究,取得了丰硕的成果,主要表现在以下四个方面:

4.1 电磁搅拌器中心的磁感应强度与电流强度有关,电流强度增大,中心的磁感应强度也增大,而搅拌的频率对磁场的分布几乎没有影响,随着搅拌频率的逐渐增加,磁场感应强度减小的幅度非常小,而直接作用于钢水的电磁力则同时受到电流强度和搅拌频率的影响。电流强度增大,电磁力增大;搅拌频率增大,电磁力减小。

4.2 旋转电磁力在水平面上是一对力偶,推动钢水进行顺时针匀速旋转运动,同一水平面上相同径向距离的电磁力大小相等,中心处的电磁力最小。

4.3 电磁搅拌装置影响着钢水的传热。没有采用电磁搅拌装置的连铸机中过热钢水直接从水口向下流动,过热度消失得非常缓慢,这样就造成铸坯断面上芯部的温度过高。采用电磁搅拌装置之后,原来的水流是从上向下垂直流动,现在就变成了水平流动,从水口流出的过热钢水浸入深度逐渐变浅,轴向温度降低,径向温度升高,使得凝固前沿的温度梯度迅速增加,从而利于传热。

4.4 钢水中的磁感应强度与电流强度成反比关系,而电流强度较低时,钢水中的磁感应强度大,而且分布比较均匀;电流强度大时,磁感应强度分布不均匀,一般是角部的磁感应强度大,而中心的磁感应强度小。

5 冶金行业的未来发展方向

连铸电磁搅拌技术应用于冶金行业大大推动了我国钢铁市场的发展,钢种越来越多,而钢材的质量和品质也在不断提升。在连铸电磁搅拌技术的发展下,我国冶金行业未来发展方向主要是质量、技术和创新。

连铸电磁搅拌技术可以有效提高铸坯的质量和品质,因此,冶金行业未来的一个重要发展方向就是不断提高钢铁的质量,学会利用先进的电磁搅拌技术实现钢铁质量的提高,利用科学技术减少钢材中的杂质,提高钢材的纯净度,生产出更多类型的连铸坯。冶金企业要根据公司的实际情况对现有技术和连铸机进行适当改进,引进先进技术,提高连铸机的作业效率,减少能源浪费,改善铸坯表面和内部结构,提高铸坯质量。既要研发具有自主知识产权的新技术,也要学会吸收国外的先进技术和工艺,开展实验研究,研发新装置,逐步缩小我国钢铁与世界钢铁的距离,加强国际交流合作,缩短新技术、新装置研发、应用于工业生产的周期,充分发挥科技的力量。

6 结束语

经过大量的实验证明,连铸电磁搅拌技术应用于冶金行业可以提高铸坯质量、降低成本消耗、增加连铸钢种、减少中心缩孔、消除中心偏析、增加铸坯内部等轴晶率等,总而言之,连铸电磁搅拌技术应用于冶金行业大大提高了钢铁质量,为钢铁行业发展注入了发展活力。

在未来,连铸电磁搅拌技术将与工业计算机控制技术、冶金技术、信息技术等融合起来,提高冶金行业的科技含量,将知识变成生产力,开创冶金行业新风象,逐步实现电磁搅拌的可视化、自动控制化等。而冶金企业也要抓住发展机遇,运用新技术、新装置,研发新技术、新装置,增加生产的科技含量,提高生产效率,减少能耗,提高经济效益,生产出更多高质量的钢材,推动我国冶金企业走向世界。

参考文献:

[1]王宝峰,李建超.电磁搅拌技术在连铸生产中的应用[J].鞍钢技术,2009(1).

[2]潘秀兰,王艳红,梁慧智.国内外电磁搅拌技术的发展与展望[J].鞍钢技术,2005(4).

[3]陈明,周代文.电磁搅拌技术在连铸上的应用[J].宽厚板,2009(5).

[4]赵少飞,杨海西.电磁搅拌技术在板坯连铸中的应用[J].河北冶金,2012(5).

[5]吴存有,周月明,侯晓光.电磁搅拌技术的发展[J].世界钢铁,2010(2).

[6]陈伟,王琛.电磁连铸技术的应用及发展[J].河北理工大学学报(自然科学版),2011(4).

[7]石瑞.电磁搅拌技术在冶金方面的应用[J].机械研究与应用,2012(2).

[8]侯亚雄,赵训迪,袁文见,等.电磁搅拌技术在冶金行业的应用[A].第一届电磁冶金与强磁场材料科学学术会议论文集[C].2011.

[9]方坯连铸电磁搅拌技术应用中的几个重要问题[A].中国金属学会特钢连铸技术研讨会论文集[C].2007.

[10]金百刚,王军,陈明,等.鞍钢电磁搅拌技术的研究与应用[A].第三届中德(欧)冶金技术研讨会论文集[C].2011.

[11]陈伟,朱立光,王琛.电磁技术在连铸中的应用及发展[A].第一届电磁冶金与强磁场材料科学学术会议论文集[C].2011.

电磁感应效应范文4

关键词: 道路照明; 无极灯; 节能环保

中图分类号: U653.95 文献标识码: A 文章编号: 1009-8631(2011)04-0089-01

现代化城市室外照明不仅仅是传统概念上对道路、广场功能性照明,还包括室外的纪念物、招牌广告、自然景点、建筑物、园林小品等的亮化、美化的景观照明。功能性照明是为了满足夜间视觉辨识的生理、心里需要及环境安全性提供的环境照明;景观照明则是运用灯光创造以观赏为主的艺术景观,是自然科学和美学相结合而形成的艺术化照明。

在目前全球能源警长的大环境下,我国照明用电量已占总用电量的10%-20%。按照我国提出的“中国绿色照明工程”,照明节电已成为节能的重要方面。尤其是城市室外照明已经成为现代文明的重要标志,作为城市基础设施设计的重要组成部分,在照明功能的体现之外它注重的是灯光亮度、色彩对比、表达的是景观环境,产生的是社会和经济的价值而不是照明的本身。科学节能的城市室外照明将是一个地区文化、科技水平和经济实力的综合体现。

一、电磁感应灯的工作原理及特点

电磁感应灯又叫无极灯,其中可分为高频无极灯和低频无极灯,且低频无极灯各项指标更优。顾名思义,无极灯就是没有灯芯的灯,大家都知道普通的白炽灯是依靠灯芯(电极)的燃烧来提供照明的,包括道路照明上用的比较多的高压钠灯、汞灯等都是有灯芯的,无极灯没有灯芯,靠什么来照明呢?靠的就是电磁感应原理。在环状的灯管外套着一对铁芯,铁芯上包着绕组,当绕组通交流电后,根据电磁感应原理,铁芯周围就产生了交变的磁场,变化的磁场产生感应电流,再利用耦合震荡原理将产生的高频电压注入到真空的玻壳或玻管里,使低压汞和惰性气体的混合蒸汽产生放电,辐射出紫外线,再通过三基色荧光粉转化为可见光。正是基于法拉第电磁感应定律的工作原理,电磁感应灯才有了诸多的优点:

(1)长寿命。由于电磁感应灯没有电极,从而有效的避免了电极燃烧的损耗,寿命一般可达到6万小时以上,比普通的白炽灯长100倍,即使对比寿命超长的美国GE的高压钠灯,也要高出一倍以上(GE的高压钠灯一般标称寿命为2.8万小时)。

(2)节能。电磁感应灯的功率因数很高,一般都在0.98左右,而高压钠灯即使在加装电容补偿后,功率因数也只能达到0.85左右,因此,电磁感应灯的节能效果是毋庸置疑的。另外,电磁感应灯的发光效率达到了80-85Im|W,属于高光效,虽然比金卤灯和高压钠灯稍低,但是用于室外照明也已足够。

(3)高显色性。电磁感应灯采用三基色荧光粉,显色指数Ra>80,在夜晚色彩还原性好,可以有效的帮助司机和行人分辨各类物体,增加道路交通的安全。色温范围较广,从2700K~6400K,而且有红、绿、兰、白、黄等多种颜色可选。

(4)无眩光、无闪烁。电磁感应灯的光源多采用高频(210-230kHz)电子镇流器来驱动,无闪烁。

(5)灯功率及电源电压的范围宽。电磁感应灯的功率现在可以做到20W~250W,无论在民用还是在工业用途中,它的适用范围都可以满足要求。另外,电磁感应灯的适用电压范围极广,从85V~277V,有着较好的通用性和稳定性。

二、电磁感应灯在绿色照明的重要作用

谈到绿色照明,首先要理解它的含义,绿色照明的科学定义是:绿色照明是指通过科学的照明设计,采用效率高、寿命长、安全和性能稳定的照明电器产品(电光源、灯用电器附件、灯具、配线器材,以及调光控制调和控光器件),改善提高人们工作、学习、生活的条件和质量,从而创造一个高效、舒适、安全、经济、有益的环境并充分体现现代文明的照明。

绿色照明在我国并不是一个新鲜的课题,早在1998年1月1日,我国就颁布了《节能法》,在“十一五”规划中,绿色照明更是十大重点节能工程之一。我国的人均资源,特别是电力资源还是比较匮乏的,目前,我国照明耗电占全国总发电量的10-20%,相当于二个三峡发电站的发电量,因此绿色照明工程的节能意义就显得非常重大。

根据绿色照明的含义,除了科学的设计外,采用什么样的照明电器产品在绿色照明中有着举足轻重的作用,光源是能量转换成光的器件,是实施绿色照明的核心。对照“效率高、寿命长、安全和性能稳定”的要求,我们可以发现,无论在光效、寿命和安全稳定性方面,电磁感应灯都具有良好的表现,是绿色照明光源的绝佳选择。

三、电磁感应灯的发展及推广应用

电磁感应灯既然有如此众多的好处,那么为什么不大力推广加以使用呢?我分析原因有以下几点:

(1)电磁感应灯的推出时间不长,还没有被广大的使用者所了解。电磁感应灯目前还仅仅只是在专业的使用者中得闻其名,至于众多的使用者,根本是闻所未闻。

(2)电磁感应灯的价格不菲,目前还处在一个比较高的地位,和自镇流式的节能灯及路灯所用的高压钠灯相比,虽然有着众多的优点,不过短时间内还难以被广泛使用。

(3)电磁感应灯的质量还有待提高,国家标准亟待出台。目前,国家对于电磁感应灯还没有出台相应的标准,电磁感应灯的生产厂家良莠不齐,标准不一,导致用户对电磁感应灯的信任度不够,没有推而广之的积极性。

(4)电磁感应灯的灯具和安装方式和现有的路灯灯具不统一,不利于旧灯改造。

电磁感应灯要发展,可以采用试点工程的方式加以推广。在新建道路的路灯安装中,可以整条道路使用电磁感应灯,这样,即能够达到整条道路的和谐统一,也可以方便统计数据,查看节能效果,使广大使用者和人民群众能够了解电磁感应灯的节能功效,无形之中宣传了电磁感应灯的良好效果,配合完成了国家有关绿色照明示范岗工程的要求,达到一举多得的效果。

推广应用的方法:

(1)加大宣传力度,提高全社会绿色照明意识。要广泛深入持久开展绿色照明的宣传,提高全民的资源忧患意识和节约意识,增强全社会的照明节能意识和可持续发展意识。要充分利用新闻媒体和各种宣传手段大力宣传节约资源和保护环境是基本国策,大力宣传实施城市绿色照明工程的意义和目标任务,大力宣传绿色照明示范工程的成效和经验。通过各种生动活泼的宣传教育,吸引全社会广泛参与,使绿色照明工程逐步成为全社会的共同意识。

(2)坚持技术创新,推广普及绿色照明工程,要在满足城市照明的功能需要的基础上,坚持科技创新,加大设施投入和新技术、新光源的推广应用,做到安全可靠、科学合理、经济实用、维护方便,提高城市绿色照明的效率。在新建和改造过程中严禁和杜绝使用高耗能、低寿命、光污染严重的灯具和光源。推广使用高光效、高寿命、节能环保(如:无极灯)等的应用,保证城市照明功效达到节能效果。

(3)建设一批绿色照明示范工程,提升城市照明品位,全面推行具有环保、节能和人文特性的绿色照明工程。

电磁感应效应范文5

【关键词】脉冲电源模块 磁场测量 线圈探头

磁场测量是研究与磁现象有关的物理过程的一种重要手段。磁测量技术的发展和应用有着悠久的历史。自16世纪末期就开始使用的利用磁力为原理的测量方法,到现在广泛使用的电磁感应法和电磁效应法。目前比较成熟的磁场测试方法主要有以下几种:磁力法、电磁感应法、磁饱和法、电磁效应法、磁共振法、超导效应法和磁光效应法。

电磁感应法是利用电磁感应定律来测试磁场的方法,当一个线圈置于变化的磁场中时,当耦合与线圈的磁通发生变化时,在线圈上就会感应出响应的电压,因此,只要测试出对应的电压大小,就可以通过一定的转换方法,获得对应的磁场大小。电磁感应法一般利用具有一定面积的线圈作为探头,因此理论上不能算真正的点磁场测试,一般将线圈面积内的磁场平均值来表征线圈中心点的磁场。

1 电磁感应法测量原理

则当线圈的几何尺寸满足上述关系时,线圈的总磁通量φ只与其中心点处的磁场相关,此时所测得的是线圈中心的“点”磁场值,其方向与线圈轴向平行。

2.2 线圈常数的确定

利用满足一定尺寸要求的感应式磁传感器测量空间“点”磁场,线圈常数是个很重要的概念,

当感应线圈的几何尺寸和匝数设计确定后,线圈常数也就定了,但在实际设计尺寸时,应综合考虑L/D 和NS 值,保证实现“点”磁场测量传感器的最优化设计。

3 电磁感应法脉冲磁场测量系统

3.1 测量系统

利用电磁感应法进行磁场测量时,测试系统主要包含以下几个部分,主要由线圈探头,连接线以及采集系统组成。

线圈探头是由导线绕制,由于仅为观察线圈探头测量磁场对于电流的跟随效果,故在线圈探头设计时并未做过多考究,其参数如下:线圈匝数8匝、外径15.20mm、内径11.48mm、长15.30mm、导线直径为1.64mm,如图2所示。

3.2 试验布置

利用电磁感应法测量磁场时,因为线圈探头有一定的体积,故为了更好的测量到“点”磁场,需将线圈探头正对电感器中心处,并妥善固定。线圈探头固定位置如图3所示,试验布置如图4所示:

3.3 试验数据

(1)示波器所测得的波形如图5至图6所示(其中CH1为线圈测得信号,CH2为电流信号):

(2)将线圈测得的信号积分后,所获得的波形如图7至图8所示:

由于示波器测得的信号存在一定的偏置,其中线圈测得信号大约有-0.02的偏置,电流信号大约有-0. 8的偏置,故对其做了相应处理。在积分前,在EXCEL表格中,分别对线圈信号数据+0.02,对电流信号数据+0. 8。

3.4 试验结果分析

虽然只是简单绕的线圈,但是通过测量的结果可以明显看出,其相对于电流的跟随性良好,并且也没有出现负值。总体来说,其波形满足要求,但是线圈探头的标定仍是一个难点。

有一点值得注意的地方,在线圈测量的dB/dt波形中,同样可以发现有个向下的负脉冲,但是由于数据还要再次经过积分,所以该负脉冲的影响并不明显,并未影响到积分后磁场波形的变化。并且,通过对比第一次试验霍尔探头测量的波形可以发现,其向下的负脉冲出现在同一地方,故可以判定为同一原因引起的负脉冲,并且该负脉冲只是单纯影响测量信号。霍尔探头是直接输出磁场的波形,所以负脉冲对其影响很大;而线圈是经过积分后才获得磁场波形,所以在这两处负脉冲对其积分结果不会造成很大影响。

4 结论

本文首先对利用电磁感应法测量磁场进行了简要的介绍,并且对其注意事项与设计做了一定分析。根据实际条件,对模块的电感外侧磁场进行了测量,并且获得了磁场测试的结果。

对于霍尔效应法而言,测试得到信号后,经过简单的转换就可以得到磁感应强度信号,但是,信号中包含有较多的干扰和毛刺,需要进行平滑处理(差分放大消除共模干扰);而电磁感应法获得的信号,需要进行积分处理才能够获得最终的磁场信号,经过积分处理后的信号失去了一些重要的跳变信息,例如霍尔效应中出现的下降沿信号,就无法在感应法中明显的体现。

为了使磁场测量的工作更加方便,下一步的工作主要为消除示波器中的偏置与设计积分环节,本文的试验数据能够为后一阶段的工作提供一定的参考价值。

参考文献

[1]董李江.模块化电源脉冲磁场测试技术研究[D].南京:南京理工大学,2008.

[2]宫延伟.低频交变磁场测量技术研究及仪器开发[D].上海:上海交通大学,2010.

[3]陈金全.测量低频交变磁场的试验方法[J].桂林电子工业学院学报,2002,22(4):53-56.

[4]强磁场测量科研组.感应法脉冲强磁场测量.

[5]张玉华,罗飞路,白奉天.交变磁场测量系统中磁传感器的设计[J].传感器世界,2003:6-12.

[6]姜智鹏,赵伟,屈凯峰.磁场测量技术的发展及其应用[J].电测与仪表,2008,4:1-10.

[7]郭中华.时变磁场测量的研究[J].中国科技信息,2008,13.

电磁感应效应范文6

在学习高中物理知识时,要求我们应该具备良好的逻辑思维能力,并且要具有将抽象知识转变成形象化、具体化的能力。在实际中,我们学习物理知识时,可以将其与我们自身的实际生活联系起来,这样不仅可以提升我们对物理知识的理解,同时还可以提升我们对物理知识的实践应用能力。电磁学是高中物理中十分重要的一个组成部分,目前已经发展成为无线电电子学、电工学等领域的基础理论,其与我们的生活有十分紧密的关联,因此,我们在学习高中物理电磁学知识时,应该特别看重电磁学知识在实际生活中的应用。

1.高中物理电磁学知识的相关概述

对于电磁学,是从传统的电学、磁学两个学科中逐渐融合产生的一个新的物理学分支,其主要是在电流磁效应、变化的磁场电效应实验下产生的,其内容涉及到电流产生电场、电荷、磁场规律等。在电磁学中,电学、磁学往往是相互作用的,切割磁感线的导体在出现变化时,就会产生相应的感应电动势,这时切割磁感线的导体就相当于一个电源,如果将其与电容器连接起来,就可以进行充电;如果连接上电阻等用电器,则可以为用电器供电,产生电流。目前,电磁学已经广泛渗透在我们的日常生活中,如各种家用电器的使用,其不仅提升了我们生活质量,改善了我们生活状态,同时还促进了我们工作、学习效率的提升。

2.高中物理电磁学知识在实际生活的应用

2.1 电磁炉

在我们日常生活中,电磁炉是十分常见的厨房用品之一,在电磁学的影响下,电磁炉从以往的明火、传导式加热方式转变成现代的直接在锅底产生热量,极大的提升了热效率。电磁炉主要是利用电磁感应的加热原理制成的,在应用电磁炉时,将交变电流导入电磁炉加热圈,加热圈会产生相应的交变磁场,同时交变磁场中的大部分磁力会经过金属锅体,在锅底部形成涡流,从而满足使用时的热量需求。在新时期下,电磁炉已经可以结合实际使用需求,进行功率大小调节,使用十分方便,电磁炉是一种高效节能的厨房电器,其在使用时不需要明火,也不会产生刺激性气味,保证了家庭厨房的安全、卫生。在实际应用中,需要注意,应该保证电磁炉的电源线符合相关要求,在条件允许的情况下,尽量在电源线插座处安装个保险盒,防止电磁炉在使用中由于功率太大而引起安全事故。同时在应用过程中,还应该保证使用的锅具符合相关要求,并且要注意将锅放在电磁炉的中心,并保证电磁炉放置平稳,避免其倾斜引起安全事故。

2.2 磁悬浮列车

对于磁悬浮列车,其主要是悬浮在轨道上前行,其基本运行原理就是高中物理提到的“同性相斥、异性相吸”电磁学原理。在地心引力和磁铁的相互对抗作用下,能使得列车良好的悬浮在轨道上,并利用直线电机进行前行。磁悬浮列车在运行时,其内部的超导体电磁可以和轨道线圈形成的的磁场产生一种相斥力,保证了列车的悬浮。通过异性相吸的原理,在磁悬浮列车的车底部、两侧倒转向上顶部安装相应的磁铁,使得列车可以呈T字形运行。轨道上方、伸臂下方安装反作用板、感应钢板,对电磁铁电流进行良好的控制,保持列车车身与导轨之间保持10-15mm的距离,同时列车在导轨钢板吸引力、车身重力下保持良好的平衡,保障列车的良好运行。

2.3 微波炉

在我们日常生活中,微波炉也是十分常见的家用电器,其原理也是利用电磁学知识实现微波炉加热的。微波炉的最大特点是可以产生300MHz-30GHz的高频电磁,其具有吸收、反射、穿透物体等优势,将其应用在加热中,具有很高的效率,能极大的减少能源消耗,并且可以消灭有害菌群,保证了食物的安全。在微波炉中,其包括电源变压器、磁控管、高压电容、冷却风扇、电脑板等几个部分,其在工作中可以将220V、50Hz交流电导入到设备中,使得电压在可控制范围内,然后在微波炉中形成电磁场,产生微波,食物在吸收微波后,其?炔糠肿踊嵯嗷ツΣ良尤取?

2.4 磁记录

对于磁记录,是伴随着信息技术快速发展的背景下,产生的一种新型记录信息的方式,其主要是利用铁磁材料特性,结合电磁感应规律形成的新型技术手段。在我们的日常生活中,可以利用磁记录来对一些声音、视频、图像进行记录,如磁带就是利用了电磁学的知识,其在录音时,将声音源通过磁头气隙流过,然后将记录的声音信息转变成电信号,并随着电流的改变,引起缝隙中磁场产生同步变化,进而引起共同作用。

电磁感应效应范文7

关键词:永磁同步牵引电机;特点;轨道交通

中图分类号: TM3 文献标识码:A

永磁同步电机由于其高效率、高功率因数,体积小,重量轻、高功率密度、启动转矩大和更好的动态性能,永磁电机在轨道交通牵引系统的研究与应用日益广泛。

1 永磁同步电机的结构特点

永磁同步电机是靠装在转子上的永久磁铁产生磁场的同步电动机。它也由定子、转子等部件构成。定子与普通异步电动机基本相同,是由叠压硅钢片构成的定子铁心和嵌在定子铁心槽内的定子线圈组成。转子的基本结构分转子铁芯,轴,永磁体。转子永磁体结构是永磁同步电动机与其他电机主要的区别。

永磁同步电机的转子大致分为表面磁石型和埋入磁石型。

表面磁铁型永磁同步电动机在转子的外侧覆盖一层非磁性的结构材料,压住永久磁铁,以防止电机高速运转时表面磁铁飞出。且高速运行时永磁体的安装工艺要求较高。

埋入磁石型是永久磁铁在转子铁心内部,铁心通常有磁性凸极性的形状,可以产生磁阻转矩,永磁磁链可以设计的较低,从而使得电机的弱磁扩速能力增大。同时,降低电机反电势,防止高速惰性时电机反电势对驱动电机的变流器的损害。埋入磁石型同步电机适合铁道车辆驱动用。

2 永磁同步电动机的技术特点

2.1高效率、高功率因数

与感应电机相比,永磁同步电机的励磁由转子上的永久磁铁产生,不需要定子绕组的无功励磁电流,所以可以得到更高的功率因数。进而得到相对较小的定子电流和定子铜耗;并且由于永磁同步电机在稳态运行时没有转子铜耗,从而可以因总损耗降低而减小冷却风扇容量甚至去掉冷却风扇。它的效率比同规格的异步电动机可提高2% ~7%,IM一般约为90-92%,PMSM可达96-97%。

2.2体积小,重量轻。

随着高性能永磁材料的不断应用,永磁同步电机的功率密度得到很大的提高,比起同容量的直流电机和异步电动机,其体积和质量都有较大的减少。而且由于电机损耗小,可省却庞大的通风冷却系统,使其在相同功率下,永磁同步电机一般要轻1/3左右。异步电机一般约为1.2-1.5kg/kW,永磁同步电机可达在1.0kg/kW以下,AGV的只有0.96kg/kW。

2.3噪声低、少维护;

永磁同步电机的转子,因为没有感应电机上能看到的转子端部的导体突出及短路环,所以不会产生由此带来的气动噪声。

永磁同步电机可作为全封闭牵引电机。永磁同步电机因转子无电流产生,发热很小,较容易采取全封闭自冷方式,这样电机内部的噪声被隔离。

采用全封闭式结构,灰尘不能进入牵引电机内部,从而不需要对电机进行定期解体清扫,减少维护量。

与感应电机相比,噪声降低可达15%。

2.4空载感应电压

永磁体的存在使永磁同步电机在断电的情况下惰行时定子绕组产生空载感应电压,并且随着转速的升高反电势亦升高。当永磁同步电机作为铁道车辆牵引电机时,由于铁道车辆特有的惰行工况,必须解决永磁同步电机在铁道车辆惰行时的高反电势,以及由此带来的重投困难。电机在高速惰行时一方面产生较高的反电势有可能造成制动的情况,另一方面,空载感应电压的峰值若超过逆变器的耐压就会损坏逆变器。因此有必要对空载感应电压进行控制。

控制空载感应电压两个主要措施:

(1)控制磁通以降低空载感应电势

永磁电机气隙磁场由转子的永久磁铁和定子的电枢电流合成产生。永久磁铁磁通恒定不能控制,只能控制定子直轴电流。在电机高速运行时施加直轴负向电流,从而减弱合成气隙磁场,以降低反电势。

在惰行时施加直轴负向电流将带来惰行的铜耗,降低电机的效率,因此施加直轴负向电流是有限度的。

(2)合理设计电机结构,控制空载反电动势

在牵引系统设计时,为了保证永磁同步电机在运行中可能产生的最大反电势小于直流母线电压值,应满足:Emax=PωmaxΨf

式中,Emax 为电机产生的最大反电势;P 为电机极对数;Ψf为永磁体产生磁链,ωmax 为电机运行过程中最高角速度;Ud为直流母线电压。

这样,永磁磁链不能设计的太大。如果单靠永磁链产生的电磁转矩是不能满足铁道车辆最大输出转矩的要求的。根据永磁同步电动机的转矩公式

M=1.5P [Ψfiq + (Ld —Lq)iqid。] (2)

其中,Ld 为直轴同步电感;Lq为交轴同步电感。为了满足铁道车辆最大输出转矩的要求,只能通过选择交直轴电感来增大磁阻转矩-增加凸极率(Lq / Ld ),从而获得足够大的输出转矩。

有多种方法通过对转子的磁路结构进行合理设计增加凸极率,国外在这方面的研究与应用上已取得了可喜的成果,内埋型双层磁路结构永磁电机,其交轴电感Lq是单层磁路结构的1.35倍,直轴电感Ld不变,由此凸极率大大增加。一种切向和径向混合型转子磁路结构新型永磁电机,这种电机大大增大凸极率,而且与同体积和重量的切向转子磁路结永磁电机相比,磁性材料用量减少25%,转矩增加50%

定子绕组串并联的方法解决高速时高空载反电势又能使电机在整个速度运行范围都能获得较好的性能。绕组串并联是指在低速运行时采用绕组串联的形式,在电机高速运行时采用绕组并联的方式,绕组并联运行时,绕组串联匝数减少,反电动势低,转折转速高,使电动机能够高速运行,降低了对电动机弱磁扩速能力的要求,甚至电机不需弱磁控制就能达到既高速空载反电势又不高的要求。绕组串并联方案存在最大的缺点就是在绕组换接后电机电流增加幅度较大大,对逆变器功率器件要求较高,合理选择绕组换接速度点,使达到最高速度时电机反电势达到最大可缓解电流增加幅度。

2.5永磁电机转子旋转频率与定子电流频率相同

永磁电机转速n与电流频率f1关系为: n=60f1/p。其中p为电机极对数。

在机车车辆中,由于轮径不一样,每个轮子(即电机转速)不一样,要求给电机供电的逆变器的频率不一样。所以只能采用一个逆变器控制一台永磁电机。

结语

永磁同步电机相对异步电机而言具有效率高、功率因数高、体积小、重量轻、可实现全封闭结构、噪音低、维修量小等的优点,已成为高速铁路和城市轨道车辆牵引电机又一个新的发展方向。

参考文献

电磁感应效应范文8

关键词:低功耗电源;Buck拓扑;电感选择;磁芯损耗

超低功率或者超高功率开关电源的电感,并不象一般开关电源那样容易选择。目前常规的电感都是为一些主流设计所制造,并不能很好地满足一些特殊设计。本文主要讨论超低功率、超高效率Buck电路的电感选择问题。典型应用实例就是小体积电池长时间供电设备。在这种电路中,让工程师感到棘手的问题主要是电池容量(成本与体积)与Buck电路体积、效率之间的矛盾。为了减小开关电源的体积,最好选择尽可能高的开关频率。但是开关损耗以及输出电感的损耗会随着开关频率的提高而增大,而且很有可能成为影响效率的主要因素,正是这些矛盾大大提高了电路设计的难度。

Buck电路的电感要求

对工程师而言,铁磁性元件(电感)可能是最早接触的非线性器件。但是根据制造商提供的数据,很难预测电感在高频时的损耗。因为制造商通常只提供诸如开路电感、工作电流、饱和电流、直流电阻以及自激频率等参数。对于大部分开关电源设计来说,这些参数已经足够了,并且根据这些参数选择合适的电感也非常容易。但是,对于超低电流、超高频率开关电源来说,电感磁芯的非线性参数对频率非常敏感,其次,频率也决定了线圈损耗。

对于普通开关电源,相对于直流12R损耗来说,磁芯损耗几乎可以忽略不计。所以通常情况下,除了“自激频率”这个与频率有关的参数外,电感几乎没有其他与频率相关的参数。但是,对于超低功率、超高频率系统(电池供电设备),这些高频损耗(磁芯损耗和线圈损耗)通常会远远大于直流损耗。

线圈损耗包括直流12R损耗和交流损耗。其中,交流损耗主要是由于趋肤效应和邻近效应所导致。趋肤效应是指随着频率的提高移动的电荷越来越趋于导体表面流动,相当于减小了导体导电的横截面积,提高了交流阻抗。比如:在2MHz频率,导体导电深度(从导体表面垂直向下)大概只有0.00464厘米。这就导致电流密度降低到原来的1/e(大概0.37)。邻近效应是指电流在电感相邻导线所产生的磁场会互相影响,从而导致所谓的“拥挤电流”,也会提高交流阻抗。对于趋肤效应,可以通过多芯电线(同一根导线内含多根细导线)适度缓解。对于那些交流电流纹波远小于直流电流的电路,多芯电线可以有效降低电感的总损耗。

磁芯损耗主要是由于磁滞现象以及磁芯内部传导率或其他非线性参数的互感产生。在Buck拓扑结构中,第一象限的B-H磁滞回线对磁芯损耗影响最大。在第一象限这个局部图中,磁滞回线显示了电感从初始电感量过渡到峰值电感量再回到初始电感量的过程。如果开关电源稳定工作在不连续状态,磁滞回线会从剩余电感量(Br)过渡到峰值电感量(参考图1)。如果开关电源工作在连续状态,那么磁滞回线将会从直流偏置点上升到曲线峰值,再回到直流偏置点。通过实验可以确定磁滞回线的精确曲线形状(基本上是椭圆曲线)。

大部分磁芯由粉状磁性材料和陶瓷等粘合材料构成。一个未使用过的磁芯可以简单地想象成由一层薄薄的粘合材料包裹、彼此独立、具有随机方向性的大量磁针。由于目前还没有能够很好解释磁芯损耗的统一模型,所以采用上述这个经验模型解释磁芯损耗,在本文最后的参考文献中有更深入的磁芯模型,供读者参考。

磁性方向近似的邻近磁针会互相影响,从而形成“联盟”。虽然这些磁针由粘合材料包裹,物理上彼此独立,但它们之间的磁场是相互关联的。我们称这些“联盟”为“单元”。而单元的边界就是内部“联盟”与外部磁针的分割面。在单元的边界外的磁针比较难与边界内的“联盟”联合。我们称这些边界为“单元壁”,这个模型常用来解释磁芯的许多基本参数。

在对磁芯施加磁场时(对线圈施加电流),方向不同的单元相互之间相关联。当足够强的电流形成外加磁场时,那些靠近线圈的单元所处的磁场更强,会首先形成联合(更大的单元)。而此时处在深一层的单元还未受到磁场的影响。联合起来的单元与未受到影响的单元之间的单元壁会在磁场的作用下,持续向磁芯中心移动。如果线圈中的电流不撤销或翻转的话,整个磁芯都将会联合在一起。整个磁芯的磁针联合在一起,我们称为“饱和”。电感制造商给出的B-H磁滞回线正表示磁芯从被磁化的初始阶段到饱和阶段的过程。如果将电流减弱,那么单元就会向自由的初始态转变,但是有些单元会继续保持联合的状态。这种不完全的转化就是剩磁(可以在磁滞回线中看出)。这种剩磁现象就会在下一次单元结合时体现为应力,导致磁芯损耗。

每个周期内的磁滞损耗为:

WH=μH×dI式中积分为磁滞回线中的包罗面积,磁芯从初始电感量到峰值电感量,再回到初始电感量的整个过程。而在开关频率为F时的能量损耗为:

PH=F×μH×dI

计算这些交流损耗看起来似乎容易。但是在高频、中等通流密度下,情况将异常复杂。每个电路都存在一些对磁芯损耗有影响的参数,而这些参数一般都很难量化。比如:离散电容、PCB布局、驱动电压、脉冲宽度、负载状态、输入输出电压等。不幸的是,磁芯损耗受这些参数影响很严重。

每个磁芯材料都有能导致损耗的非线性电导率。正是这个电导率,会由于外加磁场而在磁芯内部诱发会产生损耗“涡电流”。在恒定磁通量下,磁芯损耗大致与频率n次方成正比。其中指数n会随磁芯材料以及制造工艺不同而不同。通常的电感制造商会通过磁芯损耗曲线拟合出经验的近似公式。

电感参数

磁感应强度B在正激开关电路中可以由下式表示:

Bpk=Eavg/(4×A×N×f)式中Bpk为尖峰交流通流密度(Teslas);Eavg为每半周期平均交流电压;A为磁芯横截面积(平方米);N为线圈匝数;f为频率(赫兹)。

一般来讲,磁性材料制造商会评估磁芯的额定电感系数-AL。通过AL可以很容易的计算出电感量。

L=N2AL

其中AL与磁性材料的掺杂度成正比,也与磁芯的横截面积除以磁路长度成正比。磁芯的总损耗等于磁芯的体积乘以Bpk乘以频率,单位为瓦特/立方米。其与制造材料与制造工艺息息相关。

磁芯损耗测试设备

测试电感性能的最有效方法就是将被测试电感放置在最终开关电源电路上,然后对此电路的效率进行测量。但是,这种测试方法需要有最终电路,不易采用。现在,有一种相对简单的测试方法,可以在设计开关电源前对电感的磁芯损耗进行测试(在其设定的开关频点上)。首先,将磁芯串连放置在低

损耗电容介质上(比如镀银云母)。然后,用一系列共振模驱动。其中介质的电容值需要与被测电感的开关频率一致。最后采用网络分析仪来完成整个测试过程(信号发生器加上一个射频伏特计或者功率计也可以完成测试)。测试设备的结构如图2所示。

在谐振点,低损耗的磁芯可以看成L-C共振回路。此时损耗可以等效为一个纯阻元件(包括线圈损耗和磁芯损耗)。在上面的测试设备中,端子A和R都连接着50Ω电阻。此设备的开路(不包括电感)等效为150Ω负载的振荡器。在网络分析仪上可以表示为:

20×Log(A/R)=20×Log(50/150)=-9.54dB

在这个测试电路中,谐振电容为2000pF,被测电感大概为2.5btH~2.8btH,测试频率为1kHz。其中,磁性材料的渗透率是一个与频率有关的非线性函数,在更高的频点上,测试结果有可能不同。

磁芯损耗实验数据

一个相对磁导率为125μr的单层铁镍钼薄片磁芯,缠绕10/44的多芯电线16匝,另一个双层250掺杂度的镍铁钼磁粉芯,缠绕10/44的多芯电线8匝。电感量测试值分别为2.75μHy和2.78μHy。第一个电感虽然是16匝,但是横截面积是第二个电感的一半。在相同振幅信号的驱动下,这两个电感的损耗都很高。等效电阻分别为360Ω和300Ω。相对的,另一个电感(2.5μHy)采用Micrometals公司的非常低的掺杂材料(羰基T25-6,相对磁导率为8.5)。10/44多芯电线34匝。在同样的驱动信号下,他的等效损耗电阻为22000Ω。

结语

电磁感应效应范文9

一、楞次定律内容的理解

楞次定律的内容:“感应电流具有这样的方向,即感应电流的磁场方向总是要阻碍引起感应电流磁通量的变化。”该定律包含以下几个方面的信息:1.定律指出了感应电流的磁场方向,没有直接指明感应电流的方向。2.感应电流的磁场方向如何判断,定律当中用“阻碍”两字恰到好处地进行了描述,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,由于引起感应电流的磁通量就是原磁场的磁通量,故感应电流的磁场总是阻碍原磁场磁通量的变化。3.磁通量的变化不外乎两种情况:一是磁通量增加,二是磁通量减小。若是前者必然是阻碍磁通量的增加,则感应电流的磁场方向必与原磁场方向相反;若是后者必然是阻碍磁通量的减小,则感应电流的磁场对原磁场进行补偿,使感应电流的磁场方向与原磁场方向相同。以上分析过程可概括为四个字:“增反减同”。“增反”指原磁通量增加时,感应电流的磁场方向就与原磁场方向相反;“减同”指原磁通量减小时,感应电流的磁场方向就与原磁场方向相同。

二、楞次定律与能量守恒定律的关系

楞次定律可以有不同的表述方式,但各种表述的实质相同。楞次定律的实质是:产生感应电流的过程必须遵守能量守恒定律。如果感应电流的方向违背楞次定律规定的原则,那么永动机就是可以制成的。下面分别就三种情况运用反推法说明。

(1)磁通量变化型:如果感应电流在回路中产生的磁场促进引起感应电流的原磁通量变化,那么,一旦出现感应电流,引起感应电流的磁通量变化将得到加剧,则感应电流进一步增加,磁通量变化也进一步加剧……感应电流在如此循环过程中不断增加直至无限值,从而无需消耗外界能量就可以获得足够多的电能,这显然违反能量守恒定律。

(2)导体棒切割型:如果构成闭合回路的导体棒作切割磁感线运动时产生的感应电流在磁场中受到的安培力方向与导体棒相对运动方向相同,安培力就会使导体棒加速,导体棒加速致使电路中产生更强的感应电流……如此循环,导体的运动速度将不断增大,动能不断增大,电路中产生的电能和在电路中损耗的焦耳热都将不断增大,却不需外界做功,这也是违背能量守恒定律的。

(3)发电机:如果发电机转子绕组上的感应电流的方向,与作同样转动的电动机转子绕组上的电流方向相同,那么发电机转子绕组一旦转动,产生的感应电流就立即成了电动机电流,绕组将加速转动,结果感应电流进一步加强,转动进一步加速……如此循环,这个机器既可以作为发电机输出越来越大的电能,又可以作为电动机对外做功。显然这种永动机是不可能制成的。